Read the operator manual entirely. When you see this symbol, the subsequent instructions and warnings are serious - follow without exception. Your life and the lives of others depend on it!
Illustrations may show optional equipment not supplied with standard unit.
Machine Identification

Record your machine details in the log below. If you replace this manual, be sure to transfer this information to the new manual.

If you or the dealer have added options not originally ordered with the machine, or removed options that were originally ordered, the weights and measurements are no longer accurate for your machine. Update the record by adding the machine weight and measurements with the option(s) weight and measurements.

<table>
<thead>
<tr>
<th>Model Number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Number</td>
<td></td>
</tr>
<tr>
<td>Machine Height</td>
<td></td>
</tr>
<tr>
<td>Machine Length</td>
<td></td>
</tr>
<tr>
<td>Machine Width</td>
<td></td>
</tr>
<tr>
<td>Machine Weight</td>
<td></td>
</tr>
<tr>
<td>Year of Construction</td>
<td></td>
</tr>
<tr>
<td>Delivery Date</td>
<td></td>
</tr>
<tr>
<td>First Operation</td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>[Blank]</td>
</tr>
</tbody>
</table>

Dealer Contact Information

Name: ________________________________
Street: ______________________________
City/State: ___________________________
Telephone: ___________________________
Email: _______________________________
Dealer's Customer No.: _______________________

⚠️ WARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov
To our customer:

Congratulations on the purchase of your Great Plains product. Great Plains welcomes you to its growing family of new product owners. Your product has been designed and built by skilled workers using quality materials.

Your dealer has performed the necessary pre-delivery service to your machine, and will advise you of the proper maintenance and operating practices that will give you long, satisfactory use of your machine. Do not hesitate to contact your dealer when you have a question related to your machine.

Your machine has been designed to run efficiently in most operating conditions, and will perform relative to the service it receives. If you need customer service or repair parts, contact your dealer who has trained personnel, repair parts, and equipment specially designed for Great Plains products.

Read this manual carefully before using the machine. It will familiarize you with safety, operation, adjustments, and maintenance of your new equipment. This manual must always be kept with your machine.

Great Plains wants you to be satisfied with your product. If for any reason you do not understand any part of this manual or are otherwise dissatisfied, please take the following actions first:

1. Discuss the matter with your dealership service manager. Make sure he is aware of any problems so he can assist you.
2. If you are still unsatisfied, seek out the owner or general manager of the dealership.

If your dealer is unable to resolve the problem or the issue is parts related, please contact:

Great Plains Service Department
1525 E. North St.
P.O. Box 5060
Salina, KS, USA 67402-5060

Printed 11/11/2020 | English

Great Plains reserves the right to revise and improve its products at any time. This publication describes the state of this product at the time of its publication, and may not reflect the product in the future. The content of this publication may be changed without notice.
Table of Contents

Introduction .. 1
Intended Use Statement .. 1
Prohibited Use .. 1
Machine Identification ... 1
Target Group for Operator Manual 1
Training and Instruction ... 1

Safety Information ... 2
Before Getting Started .. 2
Operation .. 2
Handling and Disposing of Chemicals 3
Operation Noise Hazard .. 3
PTO ... 3
Maintenance .. 3
Tire Safety .. 3
High Pressure Fluids .. 4
Transporting .. 4
Safety Chain .. 4
Safety Lights and Devices 4
Shutdown and Storage .. 4
Proper Waste Disposal ... 4

Safety Decals .. 5

Preparation and Setup ... 11
Preparation Checklist .. 11
Hitch Planter to Tractor ... 11
Hydraulic Hose Connections 11
Fan Hydraulic Connections 12
Electrical Connections .. 12
Hitching with 2-Point Hitch 12
Hitching with Hydraulic Hitch 12
Planter Leveling .. 13
Speed Calibration ... 13
Speed Sensor ... 13
Markers (Option) .. 13
Marker Adjustments .. 14
Marker Extension Length 14
Liquid Fertilizer Pump (Option) 14

Operation ... 15
Pre-Start Checklist ... 15
Field Operation .. 15
Before Planting Checklist 15
Begin Planting .. 15
End Planting .. 15
Transport Locks .. 16
Raising and Lowering .. 16
Raising Planter ... 16
Lowering Planter .. 16

Lift and Fold Hydraulics ... 16
Unfolding/Folding with IntelliAg ISO6 17
Unfolding .. 17
Folding .. 18
Air System for Hoppers .. 19
Fan Hydraulics for Hoppers 21
Tractor Connections ... 21
Fan Hydraulic Hoses ... 21
Fan Operation ... 25
Fan Adjustment .. 26
Adjusting for Skips .. 27
Adjusting for Doubles ... 27
Fine-Tune Meter Pressurization 27
Alternate Skips/Doubles Check 27
Baffle Adjustment .. 28
Material Loading .. 28
Bulk Seed Tank ... 28
Row Hoppers ... 29
Seed Lubricants ... 29
Ezee Glide Plus ... 29
Bayer Fluency Agent Advanced 30
Seed Meter Setup and Adjustments 30
Seed Meter Rain Cover .. 30
Seed Disk Installation .. 30
Seed Disk Removal ... 31
Seed Inlet Gate Adjustment 31
Seed Pool Slopes .. 32
Seed Meter Operation .. 32
Hydraulic Drive ... 33
Setting Planting Rate ... 33
Ground Drive Planters 30” Row Spacing 33
Ground Drive Planters 70 cm Row Spacing 34
Contact Drive Wheel ... 34
Travel Distance ... 35
Hydraulic Drive or IRC Planters 36
Check Planting Rate ... 36
Height Switch ... 36
5000 Series Row Unit ... 36
Row Unit Down Pressure ... 37
Down-Pressure Adjustment 38
Row Unit Opener Disks .. 39
Setting Planting Depth .. 39
Introduction

The Great Plains PL5700 Planter is a pull-type implement with optional mounted fertilizer capability. The planter is front-fold for transport.

The planter includes 5000 Series openers with Air-Pro® meters. Optional unit-mounted coulters are available for light to moderate no-till conditions.

The seed metering system is ground drive, hydraulic drive, or electric drive.

- Intended Use Statement

The PL5700 Planter with standard equipment and/or authorized attachments and options is intended to be used as a seeding/fertilizing machine when operated according to instructions and safety precautions in this manual, machine decals, or other information provided with the machine.

Use this planter to seed and fertilize production-agriculture crops only. It is suitable for conventional till, min-till, and moderate no-till conditions.

Any other use, for example, using the machine as a grader or cultivator tool, is not permitted. The manufacturer and dealers are not liable for damage caused by improper use.

- Prohibited Use

Do not use this machine for any purpose or in any way other than what is described in this manual, machine decals, or any other information provided with the machine by the manufacturer. These materials define the intended use of the machine.

Unauthorized modifications to the machine will relieve the manufacturer of all liability for any resulting injury or damage.

- Machine Identification

Your machine’s parts were specially designed and should only be replaced with Great Plains parts. Always use the serial and model number when ordering parts from your dealer. Record your planter model and serial number on the inside cover of this manual for quick reference.

- Target Group for Operator Manual

Simplified Illustrations

Illustrations of the machine in the operator manual are shown without protective equipment - or with the protective equipment open - for better understanding. Be sure to observe the safety information and follow the handling instructions in the operator manual. Serious or fatal injury may be caused as a result.

This operator manual is aimed at trained agriculturists and persons who are otherwise qualified for agricultural activities and have received instruction in working with this machine.

For your safety - You must familiarize yourself with the contents of this operator manual before assembly or initial operation of the machine. In this way, you will achieve optimum work results and operational safety. The operator manual forms an integral part of the machine and must always be kept at hand. This will ensure that you:

- avoid accidents.
- comply with warranty conditions.
- have a fully functional machine in good working order at all times.

Training and Instruction

Your dealer will provide instruction on operation and care of the machine.

Information for the employer - All personnel are to be regularly, at least once a year, instructed on the use of the machine, in accordance with the regulations of the national organization for Health and Safety at Work. Untrained or unauthorized persons are not permitted to use the machine.

You are responsible for ensuring that the machine is operated and maintained safely. Make sure that you and all other persons that operate, maintain, or work in close proximity with the machine are familiar with the operating and maintenance regulations, as well as the corresponding safety instructions in this operator manual.
Safety Information

The safety symbol indicates a potential safety hazard to persons operating or near the machine and advises on how to avoid it.

The notice symbol indicates a potential for machine or property damage from operator error and advises on how to avoid misuse.

The information symbol indicates useful - but not crucial - information for machine operation, assembly, or adjustment.

Before Getting Started

1. Read this manual in its entirety before attempting to start and operate the machine.
2. Only use operators that are thoroughly trained by the owner or trained by someone with the owner's consent. The operator must be familiar with all functions of the tractor and attachments, and be able to handle emergencies quickly.
3. Maintain attention on operation at all times. Do not operate if using a smart phone, tablet, or similar electronic device, and never operate machine while impaired by alcohol, medication, any controlled substance, or while fatigued.
4. Do not ever allow passengers to ride the machine at any time, for any reason.
5. Before operation, make sure that all tractor cab levers are in their neutral positions and that the parking brake is engaged.
6. Check brakes, link pins, and other mechanical parts for wear before using machine.
7. Never wear loose or bulky clothing around machine. Use additional safety equipment, such as hard hats, eye and ear protection, safety boots, etc., as needed.
8. Do not modify the machine. Unauthorized modification can result in unsafe conditions that lead to machine damage or personal injury.

Operation

1. Always stop the tractor, put in Park and turn off engine before leaving the cab. Dismounting from a moving tractor can cause serious injury or death.
2. Consider turning radius of tractor and implement in the field. Turning tractor too tight can cause hitched implement to ride up on wheels which can result in injury or equipment damage.
3. Pull machine only from the hitch at the end of the tongue. Never pull from jack stand, safety chain, or any point other than the hitch.
4. Never leave the tractor cab unattended while the implement is running. Remove key and turn off tractor before exiting the tractor cab.
5. Watch your surroundings at all times. Do not operate with bystanders nearby, and avoid contacting overhead obstructions.
6. Check that all guards and shields are undamaged, installed, and secure before operating implement.
7. Keep children out of the work area. Do not operate or turn on machine while children are in the area.
8. Do not operate near ditches, holes, steep slopes, embankments, or other surfaces which may collapse under the machine's weight or tip the machine over.
9. Never stand between tractor and implement unless parking brake is applied.
Handling and Disposing of Chemicals

Agricultural chemicals can be dangerous. Improper use can seriously injure persons, animals, plants, soil, and property.

1. Read chemical manufacturer’s instructions carefully, and then take appropriate precautions before use.
2. Wear protective clothing.
3. Wash hands and face before eating after working with chemicals. Shower as soon as application is completed for the day.
4. Apply only with acceptable wind conditions. Make sure wind drift of chemicals will not affect any surrounding land, people, or animals.
5. Dispose of unused chemicals and chemical waste as specified by the manufacturer. Observe all the local ordinances and regulations in your area.

Operation Noise Hazard

1. Use proper ear protection like earmuff or earplugs while working.

PTO

1. Wait until all moving components have completely stopped before adjusting, cleaning, or servicing any PTO driven equipment.
2. Before installing or using PTO driven equipment, read the tractor manual and review the safety labels attached to the equipment.
3. When operating stationary PTO driven equipment, always apply the parking brake and place chocks behind wheels.
4. Stay clear of and never step over any rotating parts.

Maintenance

1. Understand procedure before doing work. Use proper tools and equipment.
2. Work in a clean, dry area.
3. Lower the implement. Put tractor in Park, turn off engine. To prevent unauthorized starting, remove key before performing maintenance or service work.
4. If work must be performed with wings raised, put cylinder locks on wing cylinders.
5. Make sure all moving parts have stopped and all system pressure is relieved.
6. Relieve hydraulic pressure before disconnecting hydraulic lines or performing any work on the system.
7. Do not work underneath any hydraulically supported components. Hydraulics can settle, leak, or be accidentally lowered. If working underneath hydraulically supported components is necessary, secure implement with stands or suitable blocking beforehand.
8. Disconnect electronic console and lighting harness from the tractor before servicing or adjusting electrical systems.
10. Remove buildup of grease, oil, or debris.
11. Check and replace worn brake lines as needed.
12. Remove all tools and unused parts from implement before operation.

Tire Safety

1. Check tires for cuts, bulges, and correct pressure. Replace worn or damaged tires.
2. Tire changing can be hazardous and must be performed by trained personnel using correct tools and equipment.
3. Tire explosion and/or serious injury can result from over inflation. Do not exceed tire inflation pressures.
4. When removing and installing wheels, use wheel-handling equipment adequate for weight involved.
5. Tighten wheel bolts only to the specified torque.
High Pressure Fluids

1. Escaping fluid from holes in hydraulic lines is difficult to spot. Do not use your hands or bare skin to search for suspected leaks; instead, use a piece of cardboard or wood. If injured by escaping hydraulic fluid, see a medical professional immediately. Exposure can result in gangrene or severe allergic reaction.
2. Check that hydraulic fittings are tight and all hydraulic hoses and lines are in good condition before applying pressure to the system.
3. Wear protective gloves and safety glasses or goggles when working with hydraulic systems.

Transporting

1. As with transporting any piece of heavy machinery, comply with all local laws and regulations before and during transport process.
2. Transport only at recommended transport speed for implement. Some rough terrains require a slower speed. Sudden braking can cause a towed load to swerve and upset.
3. Before towing implement on roads, make sure to empty out all material from the hoppers or boxes.
4. Know transport height and width of implement.
5. Do not tow an implement that, when fully loaded, weighs more than 1.5 times the weight of towing vehicle.
6. Keep clear of overhead power lines and other obstructions when transporting.
7. Do not fold or unfold the implement while the tractor is moving.
8. Reduce speed when turning, and make as wide a turn as possible. Turning tractor too tight can cause implement to tip over.
9. When towing on a trailer, secure implement with tie downs and chains.
10. When towing on a trailer, sudden braking can cause a trailer to swerve and upset. Reduce speed if trailer is not equipped with brakes.

Safety Chain

1. Use a chain with a strength rating equal to or greater than the gross weight of towed machinery.
2. Replace chain if any links or end fittings are broken, stretched, or damaged.
3. Do not use safety chain for towing.

Safety Lights and Devices

1. Always use safety lighting. Slow-moving tractors and towed machinery can create a hazard when driven on public roads. They are difficult to see, especially at night.
2. If equipped, use flashing warning lights and turn signals whenever driving on public roads.
3. Use safety devices provided with implement.
4. Keep safety lights and signs clean and visible from front and rear of machine.
5. Keep lights in operating condition.

Shutdown and Storage

1. Park the tractor and implement on a solid, level surface where children normally do not play.
2. Fold and tilt wings.
3. Put tractor in park or set the parking brake. Turn off engine and remove switch key to prevent unauthorized starting.
4. Wait for all components to come to a complete stop before leaving the operator’s seat.
5. Detach the tractor. Secure the implement using blocks.

Proper Waste Disposal

1. Dispose of waste properly to avoid threatening the environment and ecology. Potential harmful waste includes oil, fuel, filters, and batteries.
2. Use a leak-proof container for draining fluids. Do not use a food or beverage container that may be mistaken for a consumable product.
3. Do not drain or pour waste onto the ground, down a drain, or into any water source.
4. Contact your local environmental or recycling center for the proper way to recycle or dispose of waste.
Safety Decals

Your implement comes equipped with safety reflectors and decals in place.

Read and follow decal directions. Keep all safety decals clean and legible. Replace all damaged, faded, or missing decals.

Order new decals from your Great Plains dealer. Refer to this section for proper decal placement.

When ordering new parts or components, also request corresponding safety decals.

To install new decals:
- Clean the area on which the decal is to be placed.
- Peel backing from decal. Press firmly on surface, being careful not to cause air bubbles under decal.

Slow Moving Vehicle Reflector

818-055C

Bulk seed tanks - One reflector at rear of tanks.

Hopper planters - One reflector on rear of fan.

Red Reflectors

838-614C

Bulk seed tanks, four reflectors - Two reflectors under each tank.

Hopper planters, two reflectors - One reflector on the end of each light bracket.

Amber Reflectors

838-615C

Bulk seed tanks, two reflectors - One reflector on rear of each wing to face out when planter is folded.
Bulk seed tanks, four reflectors - One reflector on end of each wing to face front when folded, and one on each outside wheel mount of center section.

Hopper planters, two reflectors - One reflector on rear of each wing to face out when planter is folded.

Hopper planters, four reflectors - One reflector on each end hopper mount to face front when folded, and one on each outside wheel mount of center section.

Orange Reflectors

838-603C

Bulk seed tanks, two reflectors - One reflector under each tank.

Hopper planters, two reflectors - One reflector on each light bracket.
Excessive Speed Hazard

818-188C

WARNING

EXCESSIVE SPEED HAZARD

To Prevent Serious Injury or Death:

- Do Not exceed 20 mph maximum transport speed. Loss of vehicle control and/or machine can result.

One decal - On left front of tongue.

High Pressure Fluid Hazard

818-339C

WARNING

HIGH PRESSURE FLUID HAZARD

To Prevent Serious Injury or Death:

- Pressure can cause serious injury or death. Loss of control can result.

One decal - On left front of tongue.

1000 rpm PTO (Option)

818-240C

WARNING

To avoid injury or implement damage:

- Operate only with 1000 rpm PTO.

One decal - On front of PTO hydraulic reservoir.

Falling Hazard

818-398C

CAUTION

To prevent serious injury or death:

- Do not stand on or climb on machine when operating.
- Keep others away.

Two decals - On hydraulic cylinder of each wheel assembly.

Sharp Object Hazard

818-525C

WARNING

SHARP OBJECT HAZARD

To prevent serious injury or death from sharp objects:

- Keep hands, feet, hair, and clothing away from tines.
- Do not stand or climb on machine when operating.
- Keep others away.

One decal - On each row cleaner.
Electrocution Hazard

838-599C

Two decals - On each marker first section; top decal.

Overhead Hazard

818-580C

Two decals - On each marker first section; middle decal.

Pinch Point Hazard

818-579C

Two decals - On each marker first section; bottom decal.

Crushing Hazard

818-590C

One decal - On left front of tongue.
PL5700 Planter
Table of Contents
Safety Decals

General Information
838-995C

CAUTION

- Do not persons feels anyone operating the machine.
- Make sure that all parts are in place and tight.
- Make sure that all locking pins are engaged and gates are secured.
- Make sure that all shields and guards are in place.
- Make sure that all control levers are in the neutral position.
- Make sure that all control levers are in the neutral position.
- Make sure that all control levers are in the neutral position.
- Make sure that the machine is level.
- Do not allow unauthorized persons to operate the machine.
- Do not use the machine in bad weather conditions.

One decal - On left front of tongue.

Read Operator Manual
848-512C

WARNING

- Read Owner's Manual BEFORE operating machine.
- Keep tractor at IDLING SPEED and slowly engage PTO to prevent damage to Hydraulic Motor.
- Keep Radiator clean and free of foreign matter to prevent overheating.
- Do NOT operate with hydraulic oil at or above 180°F.

HOT FLUID HAZARD

- WARNING

One decal - On front of PTO hydraulic reservoir.

Rotating Driveline Hazard (Option)
858-030C

DANGER

- All driveline guards, tractor and equipment shields in place.
- PTO pump assembly securely attached with torque arm and clamp bolts properly torqued.
- Do NOT operate without.

One decal - On front of PTO hydraulic reservoir.

Hot Fluid Hazard (Option)
858-004C

WARNING

- Read Owner's Manual BEFORE operating machine.
- Keep tractor at IDLING SPEED and slowly engage PTO to prevent damage to Hydraulic Motor.
- Keep Radiator clean and free of foreign matter to prevent overheating.
- Do NOT operate with hydraulic oil at or above 180°F.

HOT FLUID HAZARD

- WARNING

One decal - On front of PTO hydraulic reservoir.

Rotating Driveline Hazard (Option)
858-030C

DANGER

- All driveline guards, tractor and equipment shields in place.
- PTO pump assembly securely attached with torque arm and clamp bolts properly torqued.
- Do NOT operate without.

One decal - On front of PTO hydraulic reservoir.
Tire Pressure
844-126C

To avoid injury or machine damage from improper tire inflation or torquing of wheel bolts:
- Maximum inflation pressure of tires is 64 psi.
- Torque wheel bolts to 240 ft-lbs.

16-row planters - One decal on each wheel arm.

Tire Pressure
844-275C

One decal - One decal on ground drive 30" contact wheel.
Preparation and Setup

This section helps to prepare your tractor and planter for use. Before using the planter in the field, you must hitch the planter to a suitable tractor, inspect systems, and level.

■ Preparation Checklist

- Read and understand “Safety Information” beginning on page 2.
- Check that all working parts are moving freely, bolts are tight, and cotter pins are spread apart.
- Check that all grease fittings are in place and lubricated. See “Lubrication” on page 66.
- Check that all safety decals and reflectors are correctly placed and legible. If damaged, replace with new, legible decal or reflector. See “Safety Decals” beginning on page 5.
- Inflate tires to pressure recommended and tighten wheel bolts as specified. See “Tire Information” on page 101.
- Check the planter for worn or damaged parts. Repair or replace parts before going to the field.
- If returning the planter to use from storage, remove any grease used to protect the cylinder rods.

■ Hitch Planter to Tractor

Crushing Hazard

Do not stand or place any part or your body between planter and moving tractor. Keep others away. Failure to avoid may result in severe injury or death by being crushed between tractor and planter. Stop tractor engine and set park brake before attaching harnesses or hoses.

High Pressure Fluid Hazard

Escaping fluid under pressure can have sufficient pressure to penetrate the skin. Check all hydraulic lines and fittings before applying pressure. Use paper or cardboard, not body parts, and wear heavy gloves to check for suspected leaks. If injured, seek immediate medical attention from a physician familiar with this type of injury.

Hydraulic Hose Connections

Great Plains hydraulic hoses have color coded handle grips to help hook up hoses to tractor outlets. Hoses that go to the same remote valve are marked with the same color.

<table>
<thead>
<tr>
<th>Color</th>
<th>Hydraulic Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Lift/Hitch</td>
</tr>
<tr>
<td>Gray</td>
<td>Fold/Marker</td>
</tr>
<tr>
<td>Black</td>
<td>Meter Pressure</td>
</tr>
<tr>
<td>Yellow</td>
<td>Drive/Fertilizer Pump</td>
</tr>
<tr>
<td>Red</td>
<td>Seed Delivery</td>
</tr>
</tbody>
</table>

To distinguish hoses on the same hydraulic circuit, refer to the symbol on the handle grip. Hoses with an extended cylinder symbol (1) feed cylinder base ends. Hoses with a retracted cylinder symbol (2) feed cylinder rod ends.

For hydraulic fan and drive motors, connect the hose with the retracted cylinder symbol to the pressure side of the motor. All motor returns combined in motor return hose.

The fan motor requires further hook up of a third line which returns hydraulic fluid from the fan motor case.
Fan Hydraulic Connections

Motor Seal Damage Risk

The case drain hose must be attached before the inlet and return hoses are connected. When disconnecting the hydraulic hoses, always detach the case drain hose last to prevent damage to the fan motor.

Hydraulic Motor Performance Risk

Do not attach the motor return/low pressure case drain line to a power-beyond port.

1. Connect the case drain hose to the low pressure drain connection.
2. Connect low pressure return hose to low pressure connector.
3. If the tractor has a limited number of remotes capable of continuous flow, use those remotes for the hydraulic fan, optional hydraulic drive, and delivery.

Electrical Connections

Connect the planter electrical lead to the tractor seven-pin connector. If your tractor is not equipped with an ASAE J560b seven-pin connector, contact your dealer for installation.

For ground drive planters, connect the frame fold connector. For hydraulic drive planters, connect the IBBC connector. For IRC planters, connect the IBBC and auxiliary power.

Make sure the tractor is shut down with accessory power off before making the following connections. These connections can be made in any order, and must be made before moving the planter.

- Lighting connector
- Planter console harness connector
- Speed connector (PM300 Option)
- Any optional or after-market electrical connectors

Hitching with 2-Point Hitch

Load Sway Hazard

Failure to adjust 3-point arms and sway blocks can result in injury.

1. Adjust the tractor 3-point arms and sway blocks to minimize side-to-side sway and assure proper tracking in the field and when transporting. See your tractor’s operator manual for information.
2. Connect the tractor to the planter 2-point hitch. If using a quick hitch, be sure the planter locks into the hitch securely.
3. Raise the hitch enough to take pressure off the parking stands.
4. Remove each pin (1) and slide up the parking stand.
5. Install the pins in the bottom hole (2) of the parking stand.
6. Connect the hydraulic hoses to the tractor remotes.

Hitching with Hydraulic Hitch

Machine Damage Risk

Do not use the hydraulic hitch with a tractor equipped with a 3-point hitch.

1. Move the tractor close to the planter hitch.
2. Connect the hydraulic hoses for the tongue circuit in order to raise and lower the tongue. Allow slack for hitch movements.
3. Make the electrical connections for the planter console circuit to control the planter hydraulic systems.
4. Retract tractor lift circuit lever to set the hitch height enough to clear the drawbar.
5. Back the tractor to align the drawbar and hitch. Pin the planter to the drawbar.
6. Raise the hitch enough to take pressure off the parking stands.
7. Remove each pin (1) and slide up the parking stand.
8. Install the pins in the bottom hole (2) of the parking stand.

9. Connect the hydraulic hoses to the tractor remotes.

Planter Leveling

All frame sections must be level to maintain even planting depth. Before using the planter in the field, make sure the planter is level side-to-side.

Periodic frame leveling adjustments should not be necessary, but if there are problems with uneven depth, check the planter levelness and follow these procedures.

Before making any adjustments, make sure the lift cylinders are rephased and operating properly. See “Lift and Fold Hydraulics” on page 16.

1. Unfold the planter fully.
2. Put the planter in field position by lowering and pulling forward.
3. Lower the planter completely to fully extend lift cylinders.
4. Set the 2-point hitch or hydraulic hitch so the top of the tongue tube is 36.5 in (93 cm) above the ground (A). This is the starting point for adjustments.

5. Adjust the hitch until the bottom of the frame tube at the end of each wing measures approximately 26 inch (66 cm) from the ground (B).

Speed Calibration

Calibrate the speed sensor the first time the planter is operated in the field - with or without planting. See the console manual for this procedure.

Cross-check the console speed reading with the tractor speedometer.

Speed Sensor

The console uses the pickup wheel for measuring planter ground speed. The speed sensor should be set 1/16 to 1/8 inch (1.6 to 3.2 mm) from the pickup wheel.

There are two sensors on IRC planters, one on each wing.

Markers (Option)

Electrocution Hazard

Machine is not grounded. To prevent serious injury or death, keep clear of overhead power lines when transporting, folding, unfolding, or operating all planter components. At higher voltages, electrocution can occur without direct contact.

If the planter is equipped with an auxiliary hydraulic system, set the selector valve to Marker.
Marker Adjustments

Pinch, Crush, and Sharp Object Hazards

Markers can fall quickly and unexpectedly if the hydraulics fail. Serious injury can result if caught or struck by a moving marker. Never allow anyone near the planter when folding or unfolding the markers.

Marker Extension Length

Marker extension (A) is the distance from the mark in the ground to the centerline (or furrow) of the end row unit.

To measure for marker width adjustment:

1. Lower the planter in the field and move forward a few feet.
2. Measure from the centerline of the outside active row to the mark in the ground made by the marker disk.

When correctly adjusted, there is a gap of one row space between passes as measured between centerlines of outside rows.

The table below provides suggested initial values.

<table>
<thead>
<tr>
<th>Model</th>
<th>1230</th>
<th>1630</th>
<th>1270</th>
<th>1670</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Spacing</td>
<td>30 inch</td>
<td>30 inch</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>76.2 cm</td>
<td>76.2 cm</td>
<td>70 cm</td>
<td>70 cm</td>
</tr>
<tr>
<td>Span</td>
<td>330 inch</td>
<td>450 inch</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>838 cm</td>
<td>1143 cm</td>
<td>770 cm</td>
<td>1050 cm</td>
</tr>
<tr>
<td>Swath</td>
<td>360 inch</td>
<td>480 inch</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>914 cm</td>
<td>1219 cm</td>
<td>840 cm</td>
<td>1120 cm</td>
</tr>
</tbody>
</table>

When operating with rows locked up, measure to the outside row whether in use or not. Extension values may be different for the left-hand and right-hand sides, each pass in the opposite direction, and each pass in the same direction.

To adjust marker extension:

1. Loosen the nuts (1) on the u-bolts (2).
2. Move the marker disk tube (3) in or out to get the proper adjustment.

Marker Disk Angle

Sharp Object Hazard

Marker disks may be sharp. To avoid serious injury, wear gloves when working in this area.

Adjusting the angle of the marker will increase or decrease the width of the mark the marker disk leaves in the dirt.

1. To change the angle of cut and the width of the mark, loosen the 1/2 inch bolts (1) holding the disk assembly.
2. For a wider mark, increase the angle (2) of the marker disk with respect to the tube (4). For a narrower mark reduce the angle (3).
3. Tighten the bolts.

The direction of travel (5) tends to drive the disk angle wider. If the bolts are not tight enough, or loosen over time, the disk will slip into the wide configuration.

Liquid Fertilizer Pump (Option)

If your planter is configured with the optional liquid fertilizer system, initial pump start up instructions are found in the included piston pump operator manual and will need to be completed before initial use. Refer to your John Blue piston pump operator manual.
Operation

This section covers general operating procedures and adjustments necessary for the best field performance and results. Experience, machine familiarity, and the following information will lead to efficient operation and good working habits. Always operate farm machinery with safety in mind.

Even if planting conditions rarely change, some items need periodic adjustment due to normal wear.

- **Pre-Start Checklist**
 - Read and understand **“Safety Information”** beginning on page 2.
 - Check that all working parts are moving freely, bolts are tight, and cotter pins are spread apart.
 - Check that all grease fittings are in place and lubricated. See “Lubrication” on page 66.
 - Check that all safety decals and reflectors are correctly placed and legible. If damaged, replace with new, legible decal or reflector. See “Safety Decals” beginning on page 5.
 - Inflate tires to pressure recommended and tighten wheel bolts as specified. See “Tire Information” on page 101.
 - Check the planter for worn or damaged parts. Repair or replace parts before going to the field.
 - If returning the planter to use from storage, remove any grease used to protect the cylinder rods.

- **Field Operation**

 Electrocution Hazard

 Keep clear of overhead power lines when unfolding, folding, operating, or transporting the planter. The machine is not grounded. At higher voltages, electrocution can occur without direct contact. Any line voltage present on planter or tractor can cause severe injury or death.

- **Before Planting Checklist**
 - Check electrical and hydraulic connections.
 - Make sure planter is leveled (page 13).
 - Make sure marker extension and marker disk angle are set correctly (page 13).
 - Set up the seed meters for correct seed (page 30).
 - Set planting rate. See the Material Rate manual.
 - Set fertilizer rate, if required. See the Material Rate manual.
 - Check the console and observe any diagnostic messages.
 - Check chain tension (page 63).
 - Make sure meter inlet gates are open to chart value. See Material Rate manual.
 - Make sure hoses are fully connected to meters.
 - Close and latch all tank/hopper lids.
 - Set planting depth handles the same (page 39).
 - Set down pressure springs the same except in tracks (page 38).
 - Check coulter alignment to the row (page 44).
 - Set press wheels the same except in tracks (page 42).
 - Check fan operation (page 25).

- **Begin Planting**
 - Unfold and line up the planter at the start of the first row.
 - Prime the meters with seed (page 32). Leave the fan running.
 - Unfold the marker on the next-row side.
 - Pull forward, lower the planter, and begin planting for a short distance.
 - Stop and check the planting depth, seed spacing, press wheel operation, and fertilizer application, if in use.
 - Make the necessary adjustments and resume planting.
 - For turns:
 - Fold the marker, raise the planter, and make the turn.
 - After turning:
 - Lower the planter, unfold the marker on the next-row side, and resume planting.

- **End Planting**
 - Stop the tractor.
 - Set the fan hydraulic circuit to float or neutral.
 - Fold the marker.
 - Raise the planter and install transport cylinder locks (page 16).
 - Fold the wings (page 18).
 - Turn on lights for transport.
Transport Locks
Wing hooks prevent the planter from unfolding while in transport.

A cylinder lock at each transport wheel cylinder prevents the frame from lowering during transport and maintenance. For maintenance, a cylinder lock must be used on each wing wheel.

For transport information, see “Transport” on page 49.

Raising and Lowering

Crushing Hazard
Keep all persons away from wings and openers during lowering and raising. Openers and wings will cut or crush anything beneath them, and can result in serious injury or death.

Falling Hazard
Do not stand on tires when implement is raised or lowered. Wheels may have little or no weight on them, and may turn suddenly and without warning if used as a step, resulting in serious injury.

The planter mainframe raises and lowers independently of the tongue.

Installed cylinder locks will prevent the planter from raising or lowering.

Raising Planter

Crushing Hazard
A raised planter slowly lowers when held up only by hydraulic circuit, resulting in serious injury for persons trapped beneath row units. Use hydraulic circuit to hold the raised planter only for brief periods, such as field turns and during cylinder lock installation. Use cylinder locks at all other times.

1. Extend tractor lift hydraulic lever to extend the lift cylinders.
2. Set tractor lift hydraulic circuit to neutral to hold the planter at lift.
3. Install cylinder locks if raising for transport, parking, storage, adjustments, or maintenance.

Lowering Planter

Planter Damage Risk
Do not lower the planter when turning to prevent damage to the planter.

If cylinder locks are installed, the planter cannot be lowered.

1. Retract tractor lift hydraulic lever to retract the lift cylinders until fully lowered to the ground.
2. Set tractor lift hydraulic circuit to neutral to hold the planter at lift.

Lift and Fold Hydraulics

High Pressure Fluid Hazard
Do not attempt to make hydraulic system repairs. Great Plains strongly recommends that all hydraulic system repairs to be completed by a trained professional who is knowledgeable about how to safely complete hydraulic system work. You should only maintain or adjust your hydraulic system as described within this manual. Compromising a closed hydraulic system can cause serious injury or death.

Planter Damage Risk
Do not fold or unfold without first raising planter completely or damage will occur.

The hydraulic system is fully charged and bled at the factory prior to shipping. It is necessary to rephase cylinders by extending lever for 5-10 seconds after the cylinders have been fully extended. Rephasing cylinders will allow for any air present in the system to be released through a rephase port on the cylinder. If the several attempts to rephase fail to produce
smooth hydraulic motions, it may be a sign that your hydraulic system may need to be serviced by a trained professional; contact your Great Plains dealer for service.

Unfolding/Folding with IntelliAg ISO6

Pinch Point and Crushing Hazards

Moving parts can pinch or crush causing serious injury or death. Distance between tractor and planter will decrease when unfolding and increase when folding. Keep all persons away when folding or unfolding the planter.

Tire Damage Risk

Make sure the tractor is in neutral before folding or unfolding to avoid damage to tires.

Unfolding

The distance between the tractor and planter frame will decrease by about 10 ft (3 m) during unfolding. The planter and/or tractor will move during this operation.

1. Move the planter to level ground with adequate overhead and side-to-side clearances for the unfold operation.
2. Check whether any hydraulic cylinder locks are installed. If any are installed, remove the cylinder locks and store at the front of each caster wheel.
3. Put the tractor in neutral.
4. Make sure markers, if installed, are fully folded.
5. Activate the lift hydraulics and raise the planter until the lift hydraulics are fully raised.

 If hydraulic hitch is installed:
 a. With your in-cab console, navigate to the Fold Sequence screen by tapping Fold Sequence from the Home screen.
 b. Tap the Hitch to set the Hitch hydraulics to active. This is indicated by the Hitch icon changing to a blue Active Hitch icon.
 c. Retract or extend, as needed, the tractor circuit lift lever to lower the hydraulic hitch to disengage the wing hooks (not shown).

 While using the in-cab console, you may tap the Home icon softkey from almost any screen to return to the Main Screen.

6. With your in-cab console, navigate to the Fold Sequence screen by tapping Fold Sequence from the Home screen.

7. Tap Fold to set the Fold hydraulics to active. This is indicated by the Fold icon changing to a blue Active Fold icon.

For partial unfolding, either tap Stop or set lever to neutral while wings are unfolding.

8. Lower the outer gauge wheels by extending the lift hydraulic level until the outer gauge wheels are fully extended and the wing hooks are clear of the tongue.
9. Extend the hydraulic fold lever to unfold the planter. Keep lever extended until wings are fully unfolded and the tongue hook (1) is latched.

The hydraulic cylinder on the tongue latch hook will operate automatically during the fold/unfold procedure.

10. When unfolding is complete, tap Active Fold so fold hydraulics are no longer active.
Your planter should now be unfolded and raised. To lower the planter for use in the field, see “Lowering Planter” on page 16.

To keep the planter raised for an extended period of time, install cylinder locks on to the hydraulic cylinders. See “Transport Locks” on page 16.

Folding

Fold the planter for moves between fields, transport over public roads, parking, and storage.
The tongue is raised and lowered during the sequence.

1. Move the planter to level ground with adequate overhead and side-to-side clearances for the fold operation.
2. Activate the lift hydraulics and raise the planter until the lift hydraulics are fully raised.
3. Set tractor circuit lever to neutral to briefly hold at a lift.
4. Remove the cylinder locks from storage on the front of each caster wheel and install a cylinder lock on each transport wheel.
5. Set tractor circuit levers for the fan(s) and hydraulic drive to neutral.
6. Put the tractor in neutral.
7. Make sure markers, if installed, are fully folded.
8. With your in-cab console, navigate to the Fold Sequence screen by tapping Fold Sequence from the Home screen.

9. Tap Fold to set the Fold hydraulics to active. This is indicated by the Fold icon changing to a blue Active Fold icon.

For partial folding, either tap Stop or set lever to neutral while wings are folding.

10. Retract the hydraulic fold lever to fold the machine. Keep lever retracted until wings are fully folded.

11. Raise the outer gauge wheels by retracting the hydraulic lift lever until the tongue hooks are resting on tongue stop.

12. When folding and raising are complete, tap Active Fold so fold hydraulics are no longer active.
■ Air System for Hoppers

A hydraulic fan supplies air for seed meter operation.

Fan rpm is adjusted using the tractor remote hydraulic flow control.

Air from the hydraulic fan (1) flows to the planter frame. The air then flows out the air outlets to pressurization tubes (2). The tubes route air to each row unit.

The main baffle (3) on the fan outlet adjusts air flow. See page 28 for adjustment.

The baffles (4) balance the air for the wings and center sections. Do not adjust these baffles.

Performance Risk

The balance baffles are factory set and are not to be adjusted. Any adjustment made will be very difficult to reset to factory setting.
Seed is delivered from the hopper (5) by gravity to the seed meter.

Seed enters the meter at the seed inlet and forms a seed pool (6) at the base of the meter. The gate handle controls the seed inlet gate (7) and the size of the seed pool. The inlet gate also minimizes air loss back up the seed inlet tube. See page 31 for gate adjustments.

The meter disk is driven by a chain drive connected to the drive shaft or IRC.

At the meter, pressurized air exits the meter through the seed cells (8) of the disk, and holds seed in the cells until released above the seed tube (9). Excess seed at a cell is picked off by the tufted brush (10).

The strip (11) and drop (12) brushes block meter pressure air. Seeds passing the drop brush are free to fall into the seed tube.

The seed tube sensor (13) detects seeds passing and reports to the console. Medium size and large seeds are counted individually. For smaller seeds, the seed sensor acts as a blockage monitor.

Several rows have a pressure sensor port (14) for the meter pressure system. A line from each of these rows is connected to a pressure sensor chamber (15) to average the pressures.

The averaged pressure is reported by a pressure gauge (16). See “Fan Adjustment” on page 26 for using the gauge to make fan adjustments.

Do not operate in the ground with the fan shut off, or with insufficient air pressure. The meters will completely fill with seed. Meter clean-out may be required to resume normal operation.
Fan Hydraulics for Hoppers

Tractor Connections
Fan hydraulic hose connectors to the tractor:
- 3/4 FORB quick disconnect flatface (1) - case drain connector
- 1-1/16 FORB male quick disconnect (2) - motor return
- 3/4 FORB male quick disconnect poppet type (3) - pressure supply

Always connect the case drain hose first.
The case drain (1) hose protects the outer seal of the hydraulic motor. It is a small line to the hitch, supplied with a specialized low-seep, flat-face case drain quick disconnect.

Motor Seal Damage Risk
Do not apply pressure to the case drain line. Do not change the special quick connector. A restricted or sealed case drain line will promptly result in motor seal damage.

Fan Hydraulic Hoses
Hydraulic hoses to the fan must be properly connected for the fan to operate in the correct direction, at recommended speeds, and without damage.

Hydraulic hose connections to the fans:
- 9/16 SAE case drain port (1)
- 1-1/16 SAE return port (2)
- 1-1/16 SAE pressure port (3)
Correct air flow (4) is toward the outlet.

Connect the motor return hose (2) to the sump.
A pressure-relief quick-disconnect coupler for the return line prevents motor damage if the return line is not connected, or is connected incorrectly. However, an oil spill results if the return line is not correctly connected.

Connect the fan pressure hose (3) to a tractor remote. If a priority remote is available, use it for the fan.
Air System for Bulk Seed Tank

The air system for a bulk seed tank planter consists of two hydraulic fans. One hydraulic fan supplies air for the seed delivery and the other hydraulic fan supplies air for meter operation.

Fan rpm is adjusted using the tractor remote hydraulic flow control.

A sensor measures and reports the air readings to the console.

In case of insufficient fan air or significant seed delivery air leaks, seed flow may be irregular or stop.

Some rows have lines to sample metering air pressure which is measured in a sensor chamber. The sensor reading is fed back to the console for pressure control. Air pressure is adjusted to the preset target in console.

Seed Delivery Air Flow

Air flows from the seed delivery fan (1) to the air box (2). That air is mixed with seed from the hopper and flows out the air box manifold ports into seed hoses to the rows.

If seed delivery air flow is insufficient, the indication will be low seed rate alarms. If fan speed and direction are as recommended, check for air leaks in the seed delivery system.

The baffles (3) at the seed delivery air splitter adjust air flow to the air box. See page 28 for adjustment.

A screen (4) above each seed meter vents the delivery air. The vent has two functions:

1. Releases delivery air while retaining the delivered seed.
2. Controls bulk seed delivery.

When the meter inlet is filled and seed fills the tube above the inlet, the screen becomes blocked by seed, shutting off the air flow to that meter. As the meter uses seed, the screen is exposed and air resumes flowing, carrying more seed to the seed meter.

It takes about a minute to initially fill the seed meters.
Seed Meter Air Flow

Dealer Servicing and Repair Risk

Do not adjust balance baffles. The balance baffles are factory set and are not to be adjusted. Any adjustment made will be very difficult to reset to factory setting.

Material Loss Risk

Running a seed disk with no seed, or with an open empty inlet, unbalances the air system. Doing either at a sensor row causes the gauge to report incorrectly.

Air from the seed meter operation fan (5) flows to the planter frame. The air then flows out the air outlets to pressurization tubes (6). The tubes route air to each row unit.

The main baffle (7) on the fan outlet adjusts air flow. See page 28 for adjustment.

The baffles (8) at the seed meter air splitter balance the air for the wings and center sections. Do not adjust these baffles.

Seed enters the meter at the seed inlet (9) and forms a seed pool (10) at the base of the meter. The gate handle controls the seed inlet gate (11) and the size of the seed pool. The inlet gate also minimizes air loss back up the seed inlet tube. See page 31 for inlet gate adjustments.

The meter disk is driven by a chain drive connected to the drive shaft, or the IRC.

At the meter, pressurized air exits the meter through the seed cells (12) of the disk, and holds seed in the cells until released above the seed tube (13). Excess seed at a cell is picked off by the tufted brush (14).

The strip (15) and drop (16) brushes block meter pressure air. Seeds passing the drop brush are free to fall into the seed tube.

The seed tube sensor (17) detects passing seeds and reports to the console. Medium size and large seeds are counted individually. For smaller seeds, the seed sensor acts as a blockage indicator.

Several rows have a pressure sensor port (18) for the meter pressure system. A line from each of these rows is connected to a pressure sensor chamber (19) to average the pressures.

The averaged pressure is reported by a pressure gauge (20). See “Fan Adjustment” on page 26 for using the gauge to make fan adjustments.

Do not operate in the ground with the fan shut off, or with insufficient air pressure. The meters will completely fill with seed. Meter clean-out may be required to resume normal operation.
Fan Hydraulics for Bulk Seed Tank

Motor Seal Damage Risk

Do not apply pressure to the case drain line. Do not change the special quick connector. A restricted or sealed case drain line will promptly result in motor seal damage.

Tractor Connections

Fan hydraulic hose connectors to the tractor:

- 3/4 FORB quick disconnect flatface (1) - case drain connector
- 1-1/16 FORB male quick disconnect (2) - motor return
- 3/4 FORB male quick disconnect poppet type (3) - pressure supply

Always connect the case drain hose first.

The case drain (1) hose protects the outer seal of the hydraulic motor. It is a small line to the hitch, supplied with a specialized low-seep, flat-face case drain quick disconnect.

Fan Hydraulic Hoses

Hydraulic hoses must be properly connected for the fan to operate in the correct direction, at recommended speed, and without damage.

Hydraulic hose connections to the fans are:

- 9/16 SAE case drain port (1)
- 1-1/16 SAE return port (2)
- 1-1/16 SAE pressure port (3)

Correct air flow (4) is toward the outlet.

Case drain hose (1) - from the seed delivery fan to the tee behind the motor return and pressure hoses on the meter operation fan. Then from the tee on the meter pressure fan to the tractor.
Motor return hose (2) - from the seed delivery fan to the tee on the meter operation fan. Then from the tee on the meter pressure fan to the tractor.

Fan pressure hoses (3).

Fan Operation

Rotating Fan Blade Hazard

The fan accelerates instantly. Body parts and clothing can be drawn into the fan, resulting in serious injury or death. Do not operate the fan with the guard screen removed. Disconnect fan circuit when working on fan.

Use the tractor remote hydraulic valve flow control to set fan speed. Always start the fan with a low flow setting. Monitor fan rpm with the console.

Gradually bring the fan up to the recommended initial fan speed - 2800 rpm.

The console and pressure gauge readings should agree within a few tenths of an inch.

The Material Rate manual provides initial values for meter pressurization. Normal readings are in the 0.8 inch to 4.0 inch water pressure range and vary with the crop.

If the tractor has marginal flow available, you may need to experiment with combinations of fan flow and baffle settings.

The fan requires up to 12.5 gal/min (47 liter/min). This does not include oil for lift/lower or for marker operation.

Unless the tractor has generous oil flow capacity, raise/fold markers before lift, and lift slowly. Watch meter pressure and tune operations to keep it at planting levels in turns.

Low Population Risk at Turns

Aggressive lift and lower operations and simultaneous marker operations can reduce fan rpm below that needed to pressurize meter disks. If seed falls out of cells, skips will occur shortly after turns.

Fan speed can change as oil heats to operating temperature. Check meter pressurization more often during early operations.

Stop the fan by setting the circuit to neutral or float. The check valve slows the blades to a stop by locally recirculating the oil.

Check valves provide a relief path for oil at motor shutoff. If hydraulic hoses to the fan are reversed, flow through this valve results in low fan rpm.

If a fan is connected in reverse, it may not run at all due to no oil source at the return connection. If oil is present, oil bypass at the check valve prevents the fan from reaching operating rpms. A reversed fan is not capable of providing enough air flow for planting.

If desired pressure cannot be reached, or requires unusually high oil flow at low baffle settings, the fan may be running backward. On bulk tank planters, if the rpm and meter pressurization readings are correct, but the seed meters are not getting seed, the fan may be running backward.
When a reversed fan is suspected, observe during shutoff since the direction of the motor is easier to see at lower rpms. Initial startup is instantaneous, which makes observing at startup difficult.

If the fan is found to be running backward, reverse the inlet/return lines at the fan.

Fan Adjustment

Make sure the correct seed disks are installed (see seed rate charts), and the seed inlet gates are set for the seed to be used.

1. For planter with Intelliag® - With the fan off, check the meter pressurization on the console. Re-zero as needed (see console manual).

 For planters with the PM300 - With the fan off, observe the mechanical gauge.
2. Determine the recommended meter pressurization (see Material Rate manual).
3. Put the tractor in park and set the brakes.
4. Set the tractor engine speed to typical field rpm. Lift the planter.
5. For bulk tank planters - Start the seed delivery fan. Check for meter fill:

 With the fan running and the tractor in park and/or the park brake set, remove several rain covers from the seed meters, and check for seed in the meters by looking through the disks. Check rows with longer hoses and sharper hose bends. If the fan is running and a meter runs out of seed, back-pressure to the air box manifold may prevent prompt refill. To fill a starved meter, close the seed inlet gate for about 15 seconds, then put it back to the original setting.
6. Start the meter operation fan. Gradually increase fan rpm using the tractor hydraulic flow control for the circuit.
7. Check that at least a small amount of pressure is being sensed at the meters and meter pressurization is near the suggested value.

 The meter pressurization system cannot reach full operating pressure when the hoses, meters, and disks are completely empty. Low initial pressures are normal.
8. Fill the meters.

 a. For electric drive and hydraulic drive - run a FILL DISK operation.
9. For ground-drive planters - Rotate the ground drive wheel to fill the meters. Meters are filled when seed begins emerging below two or more openers.
10. Check meter pressurization. With meters and disks filled, meter pressurization should be at target value.

 If pressure is too low, open the main baffle or increase fan speed.

 If pressure is too high, reduce the fan speed or close the baffle slightly.
11. After the first pass, take note of the average populations reported on the console:

 If the population is only slightly low, the problem can be skips (periodic empty disk cells). If slightly high, the problem can be doubles (periodic cells with double seed). A meter pressurization adjustment may correct either condition.

 If the reported population varies from the desired population by a significant amount, do the following:

 a. Expose several seeds in each of several rows, being careful not to move them.
 b. Measure and average the distance between seeds.
 c. Compare the average to the predicted seed spacing for the population in the Material Rate manual.
 d. Any instances of no seed where expected may be a sign of skips. Two seeds at the same place indicates doubles.
12. Resume planting. During the next pass, note the following on the console screen:

 - **Minimum Row Population**
 - **Maximum Row Population**

 A small variation of population between rows is normal. However, a row consistently running lower or higher than the other rows, could indicate a meter or seed sensor problem that needs attention. See “Seed Population Troubleshooting” on page 73.
When drive sprockets or electronic controls are set correctly and the meter air pressure is adjusted to the recommended setting, planted population on the console should display very close to target with the correct seed disks. If the reading is significantly different, first check that the drive is set properly and the console settings are correct for your seed disk and row spacing. Verify that the speed displayed is calibrated and matches the tractor reading. Verify that meter pressure matches the chart.

Minor variations may be caused by skips or doubles if all other causes are ruled out. This will affect the overall planter and not just one or two rows. For slightly low population, increase meter pressure to eliminate excess skips. For slightly high population, decrease meter pressure to eliminate excess doubles.

After adjustment, always check the planting rate following the procedure in the Material Rate manual to verify correct operation.

Adjusting for Skips

If everything else is correct, and the overall average population is running low, or there are gaps when doing a furrow check, seeds may be falling out of disk cells before delivery to the seed tube. Increase meter pressurization to correct this.

Insufficient meter pressurization, or unusually rough fields can increase the incidence of empty cells. Be sure to rule out other causes, such as skipping chains, meter starvation, or incorrect meter disks, before adjusting meter pressurization to reduce skips. Excess meter pressurization can increase the chance of doubles.

Before adjusting meter pressure, first verify that the drive is set, seeds per revolution is set, tires are correctly inflated, and all mechanical settings are correct.

Meter pressurization can be adjusted with the planter in motion.

To increase meter pressurization:

1. Adjust hydraulic flow to meter pressure change.
2. Wait 5 to 10 seconds for the system to update while you continue planting.
3. Continue making small adjustments until the reported population levels out at the target value.

Adjusting for Doubles

If everything else is correct, and the overall average population is running high, or there are double seeds when doing a furrow check, the cause may be two seeds in some disk cells at delivery to the seed tube. Decrease meter pressurization to correct this.

Meter pressurization can be adjusted with the planter in motion.

To decrease meter pressurization:

1. Adjust the tractor hydraulic flow.
2. Wait 5 to 10 seconds for the system to update while you continue planting.
3. Continue making small adjustments until the reported population levels out at the target value.

Fine-Tune Meter Pressurization

After several passes with satisfactory planter operation, fine-tune meter pressurization. During longer passes, with fewer distractions:

1. Observe the current overall average population from the console.
2. Adjust the meter pressurization down in small increments. Wait 5 to 10 seconds between adjustments, until skips occur (actual population begins falling below target). Note the pressure where skips begin.
3. Restore the pressure to the initial value at step 1.
4. Adjust the meter pressurization up by small increments until doubles occur (actual population begins rising above target). Note the pressure at which doubles begin.
5. Adjust meter pressurization to a value halfway between the limits from step 2 and step 4. This is the ideal value for your crop, disk, and population, providing equal margin against skips and doubles. Record this value for future use.

Alternate Skips/Doubles Check

Small seeds, particularly milo, and high populations particularly soybeans, may not be sensed as skips or doubles by the seed tube sensors, and watching console population is unlikely to locate the pressure limits. The following test can also be quicker for all seeds:

1. After planting a few passes with initial settings, remove the rain covers from several seed meters. Use rows with a variety of seed hose lengths and routes.
2. Make a meter pressurization adjustment, and resume planting for a pass or less.
3. Stop the planter motion but leave the fan running.
4. Inspect the seed disks closely. Look for empty seed cells (skips) and cells with multiple seeds (doubles).
5. Repeat steps 2 through 4 until limits are established. Record the limits and calculate an average.
6. Install the rain covers and plant with the calculated average.

Baffle Adjustment

Dealer Servicing and Repair Risk

Do not adjust balance baffles. The balance baffles are factory set and are not to be adjusted. Any adjustment made will be very difficult to reset to factory setting.

To adjust air box on planters configured with the bulk seed tank and main baffles:
1. Loosen the bolt (1).
2. Rotate the handle (2) to adjust.
3. Tighten the bolt (1).

Baffle settings:
- 90° is closed - minimum air flow.
- 0° is wide open - maximum air flow.

Material Loading

Bulk Seed Tank

Entrapment and Suffocation Hazard

A seed tank that is full, or appears full, can be an entrapment hazard. You can sink all the way into the grain and suffocate in a matter of seconds. Never enter a seed tank for loading, unloading, or routine maintenance. Keep lid tightly closed during operation.

Seed is loaded into the bulk seed tank from above.
1. Lift the handle (1).
2. Swing the handle out until the hook (2) releases from the u-bolt latch (3).
3. Move the hook clear of the latch.
4. Lift lid slightly at the pivot end to clear the strainer (4).
5. Swing lid away from the opening.
6. Inspect the hopper to make sure it contains only the expected material.
7. Load the seed.
8. If equipped, make sure the bulk tank level sensor is connected to the console harness.
9. Close and latch lid(s).
 a. Swing lid over opening until the hook is centered on the u-bolt latch.
 b. Open the handle and engage the hook on the latch.
 c. Close the handle.

Auxiliary Hydraulics (Option)

The optional auxiliary hydraulic kit includes a manual valve that diverts the marker/fold hydraulic circuit to a pair of quick-connect ports at the back of the planter.
1. Retract or fold any marker that is lowered. Return the cab control for that circuit to Off.
2. Close any shut-off valve on the auger and connect the auger to the auxiliary quick-connect ports at the rear of the planter.
3. At the auxiliary selector valve, move the handle (1) from Fold to Auxiliary.
4. With no seed present, open the auger shutoff valve, and operate the cab control to determine which setting (extend or retract) turns the auger in the correct direction for seed lift.
5. Load the seed.
6. Shut off the cab circuit, then the auger.
7. Return the auxiliary selector valve handle to Fold. Do not switch the valve until the SCV is returned to neutral or unexpected movement of the marker or wing fold may occur.

8. Disconnect the auger hydraulic hoses at the auxiliary ports.

Row Hoppers

Agricultural Chemical Hazard
Read and follow all supplier cautions for safe handling of treated seed.

Irritant Exposure Hazard
Do not mix lubricants into seed with hands or any part of body. Wear protective equipment. Use tools.

Two different sizes of row hoppers are available - 3.0 bushel and 1.6 bushel. The process for loading both hoppers are the same.

1. Check that each hopper is correctly seated and mounting bolts are secured. Make sure the hopper discharge opening is aligned with the seed inlet tube.

2. Clean out any leftover seed and debris in the hopper.

3. Install the correct seed disks.

 If unable to premix before loading, premix at least one gallon (4 liters) per hopper, and load this seed first. Fill the hoppers to half full with fresh seed. Add half the lubricant and stir with a tool. Complete filling the hoppers and sprinkle the remaining lubricant on top.

5. Add seed and lubricant to hoppers.

Seed Lubricants

Irritation and Chronic Exposure Hazards
Seed lubricants may cause eye or skin irritation in high concentrations. Prolonged inhalation may cause lung injury. Product can become slippery when wet. Wear gloves and a respirator when transferring and mixing seed lubricant. Do not use bare hands or any part of your body to mix. Avoid breathing lubricant dust. Follow chemical manufacturer’s precautions when handling items that may be coated with treatment. Use proper skin, eye, and respiratory protection.

To maximize the performance of the metering systems, it is imperative to use Ezee Glide Plus or Bayer Fluency Agent Advanced. Proper use of seed lubricants will decrease wear in the seed meters and helps to prevent clumping, bridging, and clinging of seed. It is key to premix the seed lubricant into the seed so that each seed is evenly coated. Just mixing seed into the top layer of the bulk seed hopper will not be effective.

Ezee Glide Plus

Talc-Graphite Mix

Ezee Glide Plus seed lubricant is suitable for all seeds, especially treated or inoculated seed, except where talc and graphite mixes are prohibited or not advantageous. Thorough mixing of seed and added seed lubricant is required.

Recommended usage:

<table>
<thead>
<tr>
<th>Clean Seed Type</th>
<th>Ezee Glide Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milo</td>
<td>1 cup per 2 bushels</td>
</tr>
<tr>
<td></td>
<td>335 ml per 100 liters</td>
</tr>
<tr>
<td>Cotton</td>
<td>1 cup per 2 bushels</td>
</tr>
<tr>
<td></td>
<td>335 ml per 100 liters</td>
</tr>
<tr>
<td>Sunflowers</td>
<td>1 cup per 2 bushels</td>
</tr>
<tr>
<td></td>
<td>335 ml per 100 liters</td>
</tr>
<tr>
<td>Mustard</td>
<td>1 cup per 30 pounds</td>
</tr>
<tr>
<td></td>
<td>240 ml per 13.6 kg</td>
</tr>
<tr>
<td>Canola</td>
<td>1 cup per 30 pounds</td>
</tr>
<tr>
<td></td>
<td>240 ml per 100 liters</td>
</tr>
<tr>
<td>All other seed</td>
<td>1 cup per 4 bushels</td>
</tr>
<tr>
<td></td>
<td>170 ml per 100 liters</td>
</tr>
</tbody>
</table>
Adjust this rate as necessary so all seeds become evenly coated while avoiding an accumulation of lubricant in the bottom of the hopper.

For seed with excessive treatment, or for humid planting environments, increase the rate as needed for smooth seed meter operation.

Bayer Fluency Agent Advanced

This agent is required by regulation for certain crops in certain regions; such as corn and soybeans in Canada. It is an alternative to Ezee Glide Plus in other locales, for large seeds. It is not recommended for small seeds such as canola and milo.

Refer to the booklet attached to the bucket for recommended usage. Do not exceed recommendations, as excess amounts adversely affect accurate seed metering.

Seed Meter Setup and Adjustments

The only seed meter adjustments are for the seed inlet gate, a choice of disks, and meter pressure.

Seed Meter Rain Cover

The rain cover keeps side winds from pushing seed out of the disk cells. It also keeps precipitation, sunlight, and field debris out of the meters. It acts to direct any dust or debris coming from the seed downward toward the soil. A knockout brush on the inside of the cover brushes loose seeds off the seed disk.

To remove the rain cover:

1. Unclasp the latches (1 and 2).
2. Pivot the cover forward and down at the tab (3) and remove.

When removing a cover, inspect it for damage and missing parts. If a cover does not have both latches it can be lost during transport or field operations. Also, inspect the knockout brush for wear.

To replace a latch, slide the replacement latch onto the cover lugs from the meter side, then snap the other end down over the lugs.

To replace the knockout brush, see “Knockout Brush Replacement” on page 63.

Seed Disk Installation

Population Risk

Make sure to use the same disk in all active rows. Inspect disks for damages or wear which can cause irregular seeding and/or off population.

1. Check the part number and description on the seed meter disks against the seed rate chart data.
2. Before installing, inspect the disks. Do not install damaged or worn disks which can cause irregular seeding. Chips and cracks can increase brush wear.
3. Remove the meter rain cover.
4. Inspect the meter and brushes (see page 61 for details).
5. Make sure the seed meter clamp (1) is aligned with the disk seat (2).
6. With the seed cells side facing the meter housing, place the new seed disk on the disk seat.
7. Rotate the seed meter clamp (1) clockwise 45° to clamp the disk. The clamp will seat into the seed disk hub (2).

With a new meter or new brushes, force the disk into the brushes to position the seed meter clamp. The brushes will be trained during initial rotations.
With slightly used brushes, when a disk is first clamped, the disk hub may be flat with the disk seat only on the gate side. The disk should seat as it first turns. This condition will ease as the brushes are used.

8. Rotate disks forward a few turns after disk installation to make sure the meter brushes lean in the correct direction. This is particularly important for new brushes. It will improve meter performance and reduce air consumption.

9. Set the seed inlet gate to the setting on the seed rate chart.
10. On the console, select the new Material, seed disk Cell Count, and target population.
11. Reinstall the rain cover.

Seed Disk Removal
1. Remove the rain cover. If seed is present, close the seed inlet gate to prevent more seed from entering the meter.
2. Attach the seed container, stored at the left end of the planter, to the seed meter or place a tarp under the row unit to collect the seed.
3. Hold the seed disk and rotate the seed meter clamp (1) counterclockwise 45° to release the disk.
4. Tilt the top of the seed disk toward the meter and slowly remove the disk, allowing seed to collect in the container or on the tarp.
5. Open the seed inlet gate to release the remaining seed.
6. Clean the seed from all brushes. Inspect brushes for excess wear and damage, see “Seed Meter Brush Replacement” on page 61.
7. Clean seed seat so new disks can fully seat.
8. Inspect removed disks for excess wear and damage, see “Seed Disk Maintenance” on page 63. Set aside any disks requiring replacement.
9. Clean seed disks and place in storage.
10. Install the rain covers.

Seed Inlet Gate Adjustment
The seed inlet gate (1) controls the volume of bulk seed at the seed disk. The settings vary with crop, seed size, and seed treatment. The gate has settings for row shut-off for completely closed, and clean-out for wide open.

The seed rate charts include suggested initial gate settings. Refine these settings based on the slope of the seed pool at the bottom of the seed disk and flowability of seed.

Coarse seed treatments may require a larger opening.
Do not adjust more than two positions different than the seed rate chart.
To adjust the seed inlet gate, squeeze the tabs (2) and move the gate up or down as necessary. There are four settings for the gate; I, II, III, IV.

The table below is a general summary of gate settings.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Setting Typically Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Closed - row shut-off, meter refill</td>
</tr>
<tr>
<td>I</td>
<td>Small seeds, such as milo, with little or no treatments</td>
</tr>
<tr>
<td>II</td>
<td>Small treated seeds and edible beans such as soybeans</td>
</tr>
<tr>
<td>III</td>
<td>Corn, round popcorn</td>
</tr>
<tr>
<td>IV</td>
<td>Large corn, heavily treated corn</td>
</tr>
<tr>
<td>O</td>
<td>Wide open - clean-out</td>
</tr>
</tbody>
</table>

Seed Pool Slopes

The best seed pool slope results in the most consistent seeding with minimal skips and doubles. The illustrations below are found to be the best seed pool slopes for sample seeds.

Adjust the seed inlet gate if the suggested setting does not work for your seed.

For medium size and smaller seeds that flow easily, the slope runs from just above the 8:00 position on the housing wall, down to one or two seeds deep at the base of the rear strip brush (1).

For medium size and larger, or heavily treated smaller seeds that flow less easily, the slope runs at or slightly above the 8:30 position on the housing wall, down to three to six seeds deep at the base of the rear strip brush (1).

Keep the top left/rear end of the pool below the 9:00 position; meter horizontal center-line.

In general, the seeds at the base of the strip brush need to be deep enough that no air escapes, and that just enough seeds are present to begin populating the cells.

Seed Meter Operation

1. Install disks for your crop/population range according to the Material Rate manual and the instructions beginning on page 30 of this manual.
2. Open the gate at the planting rows to the recommended initial setting from the seed rate charts.
3. Operate the fan to achieve the suggested air pressure.
4. With all rows primed, rotate meters one turn to fill the cells to the edge of the drop brush. Rotate the drive shaft (top forward) with a 7/8 inch wrench, or raise and rotate the ground drive wheel (top forward).
5. Leave the fan running to keep seed in top cells.
6. Install rain covers.
7. Begin planting. Meter operation is automatic from this point on.

Hydraulic Drive

General Warning Hazard

Watch your surrounding at all times. Do not operate with bystanders nearby.

The hydraulic drive uses a hydraulic motor (1) as the power source for meter rotation.

The drive requires a separate closed center hydraulic circuit capable of 4.5 gal/min (17 liters/min). A check valve (2) at the motor prevents reverse operation in case the connections are reversed at the tractor or the circuit lever reversed.

A solenoid valve (3) controls flow to the motor.

A filter (4) in the system requires periodic maintenance.

Refer to the console manual for more information.

When the planter is raised in normal field operation, the lift switch causes the console to shut off hydraulic flow to the motor. Override this shut off and operate the drive while raised using special console modes as follows:

- In User Level 1, the FILL DISK operation runs the motor for one meter disk revolution.
- In User Level 2, the 5 REV TEST operation runs the motor for five meter disk revolutions.

Setting Planting Rate

Population Target Risk

Tire pressure is important for both ground and hydraulic drives. Incorrect tire pressure causes incorrect ground speed readout. On ground drive, incorrect pressure causes incorrect or inconsistent seed metering.

1. Prepare seed meters including disks, gates, and meter pressurization.
2. Check tire pressure.
3. Check planting rate.

Ground Drive Planters 30” Row Spacing

Adjust range and transmission sprockets.

Range Sprockets

1. Select the range sprockets for your seed and rate from the charts in the Material Rate manual.
2. Loosen the idler (1) and remove the drive chain.
3. Remove the pins from the sprockets (2) and (3) and at storage towers (4).
4. Exchange the sprockets to match the seed rate chart.
5. Install the pins on the sprockets. Store and pin the removed sprockets on the storage towers.
6. Reroute the chain and tighten the idler.

Transmission Sprockets

1. Select the transmission sprockets for your seed and rate from the Material Rate manual.
2. Pull the idler handle (1) to remove the chain.

3. Remove retaining pins from DRIVING (2) and DRIVEN (3) sprockets and at the storage towers (4).

4. Exchange sprockets so the new DRIVING and DRIVEN sprocket tooth counts match the seed rate chart.

5. Install the pins on the sprockets. Store and pin the removed sprockets on the storage towers (3).

6. Reroute the chain and engage the idler.

7. Install the chain cover and insert the three pins to secure.

Transmission Sprockets

1. Select the transmission sprockets for your seed and rate from the charts in the Material Rate manual.

2. Loosen the idler (1) and remove the drive chain.

3. Remove retaining pins from DRIVING (2) and DRIVEN (3) sprockets and at the storage towers (4).

4. Exchange the sprockets to match the seed rate chart.

5. Install the pins on the sprockets. Store and pin the removed sprockets on the storage towers.

6. Reroute the chain and tighten the idler.

Ground Drive Planters 70 cm Row Spacing

Adjust range and transmission sprockets.

Range Sprockets

1. Select the sprockets for your seed and rate from the Material Rate manual.

2. Remove the three pins (inset) to remove the chain cover. Set aside.

3. Remove retaining pins from DRIVING (2) and DRIVEN (3) sprockets and at the storage towers (4).

4. Exchange sprockets so the new DRIVING and DRIVEN sprocket tooth counts match the seed rate chart.

5. Install the pins on the sprockets. Store and pin the removed sprockets on the storage towers.

6. Reroute the chain and engage the idler.

Contact Drive Wheel

Rate Mismatch Risk

Tire pressure matters; ensure the tires are properly inflated before making any adjustments. An incorrect tire pressure causes incorrect or inconsistent seed delivery.

Planter Damage Risk

Do not adjust the down pressure spring so tight or the travel distance so long that the planter will bottom out when the planter is fully raised.

The contact wheel drives the seed metering system on a ground drive planter. Contact drive wheels travels in the opposite direction of the main transport tires. The contact travel distance and down pressure spring needs to be adjusted before planting. You can adjust the distance between the contact wheel the main transport tires. You can adjust the down pressure the contact wheel exerts by adjusting the down pressure spring.
Before any adjustments are made on the contact wheel drive, you must ensure the tires are properly inflated.

Travel Distance

Adjust wheel travel distance to obtain an 1 1/2 inches contact wheel clearance (A) above the main transport tires.

The contact wheel controls the timing of the seed meter drive when raising and lowering the planter. Increasing the gap between the contact wheel and the main transport tire causes the seed flow to start and stop at a lower planter height. Decreasing the gap will cause seed flow to start and stop at a higher height.

Travel distance adjustment for 30" row spacing:
1. Fully raise the planter to ease adjustment.
2. Park the planter on level, even ground.
3. Turn off tractor, set the park brake, and remove the key.
4. Ensure the tires are properly inflated. See “Tire Information” on page 101.
5. Loosen the two bolts (1) on the top of the down spring assembly to extend the length of the shaft or tighten the two bolts (1) on the top of the down spring assembly to shorten the length of the shaft.

Make contact wheel travel distance adjustment before adjusting the down pressure spring.

To adjust the down pressure spring for 30" row spacing:
1. Fully raise the planter to ease adjustment.
2. Park the planter on level, even ground.
3. Turn off tractor, set the park brake, and remove the key.
4. Ensure the tires are properly inflated. See “Tire Information” on page 101.
5. Use a hand tool to loosen or tighten the nuts (2) on the top of each spring to desired tension. Loosening the nuts will decrease down spring pressure. Tightening the nuts will increase down spring pressure.

Travel distance adjustment for 70 cm row spacing:
1. Fully raise the planter to ease adjustment.
2. Park the planter on level, even ground.
3. Turn off tractor, set park brake, and remove the key.
4. Ensure the tires are properly inflated. See “Tire Information” on page 101.
5. Loosen or tighten the adjustable yoke end (3) on the bottom of the down spring assembly to lengthen or shorten the shaft.

Make contact wheel travel distance adjustment before adjusting the down pressure spring.

To adjust the down pressure spring for 70 cm row spacing:
1. Fully raise the planter to ease adjustment.
2. Park the planter on level, even ground.
3. Turn off tractor, set the park brake, and remove the key.
4. Ensure the tires are properly inflated. See “Tire Information” on page 101.
5. Use a hand tool to loosen or tighten the nuts (4) on the top of each spring to desired tension. Loosening the nuts will decrease down spring pressure. Tightening the nuts will increase down spring pressure.

Hydraulic Drive or IRC Planters
Set console and drive control channel. See console manual for details.

Check Planting Rate
Always check seed delivery rate before planting.

The console can count most singulated seeds, but may not accurately count the smallest seeds, such as canola. It does not count individual volumetric seeds.

Rate checking is described in detail in the Material Rate manual. The following is an overview of the general process, which varies with the seed type and planter meter drive type.

Before checking the rate, make sure the console is configured with an accurate Ground Speed Constant.

At the start of each season, perform a GROUND SPEED CALIBRATION over 400 ft (100 m), as described in the console manual. When completed and entered in the console, check the reported implement speed against the tractor speedometer or other reference.

Singulated Rate
A furrow check is the most accurate way to verify seeding is at the desired population. This is done by planting for a short distance with one or two rows set to shallow depth and with press wheels tied up so furrows do not close.

Seeds are counted in the furrow over a specific distance and the area rate is calculated. Refer to the Material Rate manual for details.

The console will also be counting during the test. Compare the results.

If the checked rate varies from the chart rate or programmed rate, there may be a configuration error that requires correction. Do not calibrate to correct unexpected variations in singulated rates.

• Height Switch
The height switch informs the console if the planter is raised or lowered. On all planters, the console only counts seed when the planter is lowered and the drive is activated. On hydraulic and electric drive planters, the height switch also enables or disables the drive.

When the hydraulic drive planter is raised, the switch state is ignored during FILL DISK and 5 REV TEST operations.

To adjust the height switch:

1. Lower the planter to the height at which seed delivery should begin.
2. Loosen the nut (1) on the height switch.
3. Rotate the switch until the spring actuator (2) touches the cylinder pin (3).
4. Rotate the switch in until it clicks. Tighten the nuts to secure the bracket.

• 5000 Series Row Unit
Down-pressure cam (1) - A row unit is mounted on parallel arms, allowing the row unit to move up and down while staying horizontal. Springs set by a cam add an adjustable force to the row weight.

Pressurization air inlet (2) - Pressure-regulated air enters the meter here and holds seed in the disk cells. See “Fan Adjustment” on page 26.

Seed inlet (3) - Gravity carries the seed into the meter at the seed inlet gate. For bulk tank planters, air carrying the seed is vented at the bottom of the air release cone. Remove the hose for inspection. There are no adjustments.

Seed meter (4) - see “Seed Meter Setup and Adjustments” on page 30.

Seed inlet gate (5) - This controls the level of bulk seed at the disk. There are four operating settings, plus fully closed for shut-off or storage. See “Seed Inlet Gate Adjustment” on page 31.
Side depth wheel - The T-handle (6) sets the planting depth by controlling the height of the side depth wheels relative to the opener disks. See “Setting Planting Depth” on page 39.

Press wheels (7) - The press wheels close the furrow, pressing the soil over the seed to provide good seed to soil contact. See “Press Wheel Adjustments” on page 41. A variety of press wheels are available, some are region-specific. Consult your Great Plains dealer.

Row cleaner (8) - Optional row cleaners clear trash from the row, to a depth set by an adjustment on the arms.

Unit mount coulter (9) - Optional unit mount coulters cut remaining trash and begin opening the seed furrow. Working depth is set by row depth and a mounting hole selection. See “” on page 43.

Opener disks (10) - Row unit double disk openers create the seedbed furrow with adjustments for angle and spacing. See “Row Unit Opener Disks” on page 39.

Seed tube with sensor (11) - Requires no adjustment.

Scrapers (12) - Optional inside scrapers require no adjustment. For side depth wheel scrapers, see “Depth Wheel Scrapers (Option)” on page 41.

Seed firmers (13) - The seed firmer minimizes seed bounce and improves soil contact. It may also deliver fertilizer. see “Coulter Row Alignment” on page 44. The seed flap is standard. The Keeton® seed firmer (shown) is optional.

Disk scraper/separator (14) - The scraper/separator can also place liquid fertilizer under the seed.

Side depth wheel contact adjuster (15) - see “Side Depth Wheel Adjustments” on page 40.

Press wheel centering adjuster (16) - see “Press Wheel Centering” on page 42.

Row Unit Down Pressure

The ideal amount of down force causes the side depth wheels to compress any loose surface soil, but not press a trench into the subsoil.

To check down force, operate the planter for a short distance on typical ground, with or without seeding, and stop. Leave the planter lowered with row units in the ground.
At several row units, inspect the furrow created by the opener disks, but before the furrow closing by the press wheels (A).

Be sure to inspect rows in and out of tire tracks.

(1) If the side depth wheels are leaving no tracks, or light tracks, increase down force.

(2) If the side depth wheels are compressing trash and loose soil, and leaving clear tracks at the top of the subsoil, down force is correct and needs no adjustment.

(3) If the side depth wheels are creating a trench into the subsoil, down force is too high and needs to be reduced.

To adjust down pressure:
1. Raise the planter and secure.
2. Use 1-1/8 inch (29 mm) open end wrench or the wrench stored at the left end of the planter.
 - If using the supplied wrench, be sure the row unit is off the ground to fully relax the springs.
3. Position the wrench on the nut (2). Pull back and down.
4. Move the adjustment cam (3) to the new setting.

Down-Pressure Adjustment

Population Risk
Do not set all rows any higher than notch 4. Using settings above this on all rows will create uneven depth control and improper function.

Tool Damage Risk
Although this adjustment can be made with the planter lowered, the springs will be in tension and will require more effort. This extra force may damage tools.

Row unit springs provide the down pressure necessary for row unit disks to open a seed trench. Bulk tank row units have dual springs, and hopper row units have a single spring.

The springs allow the row units to float down into depressions and up over obstructions. The springs also provide down force on coulters when using optional row mounted coulters.

You can adjust down pressure individually for each row unit. This is useful for penetrating hard soil and planting in tire tracks. For best results, adjust tractor tires so the tires are not ahead of the planter rows.

Use only enough down pressure to cut the seed trench and maintain proper soil-firming over seed. Excessive row unit down force will lead to premature wear on row unit components. Excessive down force will also cause uneven seed depth.

To adjust down pressure:
1. Raise the planter and secure.
2. Use 1-1/8 inch (29 mm) open end wrench or the wrench stored at the left end of the planter.
 - If using the supplied wrench, be sure the row unit is off the ground to fully relax the springs.
3. Position the wrench on the nut (2). Pull back and down.
4. Move the adjustment cam (3) to the new setting.

Minimum setting (4) and maximum setting (5) are indicated by the position of the adjustment cam. Each notch on the adjustment cam will increase the down pressure on the row unit springs. Use the table as a setting reference.
Individual rows may be set higher if running in tire tracks.

- **Row Unit Opener Disks**
 - **Sharp Object Hazard**
 - Coulter and disk blades are sharp. To avoid serious injury, wear gloves when working in this area.
 - **Crushing Hazard**
 - Make sure machine is secure before working on it. A falling machine can result in serious injury or death.

The openers have three adjustments:
1. Planting/seed depth
2. Openers disk to disk clearance
3. Side depth wheel/opener disk clearance

Setting Planting Depth

The T-handle sets planting depth by limiting how high the side depth wheels ride relative to the opener disks. The position of the seed tube is fixed relative to the disks and is not adjusted.

To adjust seed depth:
- Move the T-handle forward (A) for shallower planting.
- Move the T-handle back (B) or deeper planting.

Disk Contact Adjustment

Opener disk angle and stagger is not adjustable, but disk-to-disk spacing is, and may need attention as disks wear. Spacers will need to be reset when disks are replaced.

The ideal spacing causes the disks to be in contact for about 2.5 cm (1 in). If you insert two pieces of

<table>
<thead>
<tr>
<th>Cam Notch</th>
<th>Pounds</th>
<th>Kilograms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single Spring</td>
<td>Dual Springs</td>
<td>Single Spring</td>
</tr>
<tr>
<td>out of notch</td>
<td>Lock-up and maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>255</td>
<td>320</td>
<td>115</td>
</tr>
<tr>
<td>2</td>
<td>265</td>
<td>355</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>285</td>
<td>385</td>
<td>135</td>
</tr>
<tr>
<td>4</td>
<td>315</td>
<td>435</td>
<td>145</td>
</tr>
<tr>
<td>5</td>
<td>345</td>
<td>485</td>
<td>155</td>
</tr>
<tr>
<td>6</td>
<td>375</td>
<td>535</td>
<td>170</td>
</tr>
<tr>
<td>tip of cam</td>
<td>Do not use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
paper between the disks, the paper should slide from touching to 3.8 cm (1-1/2 inch) from each other (A).

If the contact area is significantly larger or there is a large gap, adjust by moving one or more spacer washers.

To move spacer washers:
1. Raise the planter and install lift cylinder locks.
2. Remove the side depth wheels on the row unit needing adjustment.
3. Remove the bolt (1) retaining the opener disk (2) on one side.
4. Carefully remove the disk. Do not lose the hub components and spacer washers (3 and 4).
5. To reduce the spacing between disks, move one spacer washer from the inside (3) to the outside (4) of the disk.
6. Reassemble and check the disk contact.

The goal is to have both disks and wheels turn freely, but keep soil and trash from getting between them.

The side depth wheels have two adjustments. Changing one requires at least checking the other. The two adjustments are:
- angle of side depth wheel
- distance between side depth wheels and disks.

In addition to changing the disk angle due to changing depth or new field conditions, the two settings may need attention over time as the disk and wheels wear from normal use. This adjustment will also need to be made if any opener components are replaced.

For 2 inch (5 cm) planting depth, adjust the side depth wheel angle so the wheels contact the row unit disks at the bottom of the wheel and the gap is 3/8 to 5/8 inch (9.5 to 16 mm) at the top. Check with row units in the soil so wheels are held up.

At the same time, keep side depth wheels close to opener disks so openers do not plug with soil or trash. Wheels should be out far enough so disks and wheels turn freely.
To adjust the side depth wheels:

1. Raise the planter slightly, removing the weight from the side depth wheels.
2. Loosen the bolt (1).
3. Move the wheel and arm out on the O-ring bushing.
4. Loosen the pivot bolt (2).
5. Turn the hex adjuster (3) so the indicator notch (4) is at 5 o’clock to 7 o’clock. Use this as the starting point for adjustment.
6. Move the wheel arm in so the side depth wheel contacts the row unit disk.
7. Tighten the bolt (1) to clamp the arm around the bushing and shank.
8. Check wheel-to-disk contact at 2 inch (5 cm) planting depth. Lift wheel 2 inch (5 cm), check the contact, and release. When let go, the wheel should fall freely.
 - If the wheel does not contact the disk at the bottom to the area where the disk leaves contact with the soil, move the hex adjuster until the wheel is angled for proper contact with the disk.
 - If the wheel does not fall freely, loosen the bolt (1) and slide the wheel arm out just until the wheel and arm move freely. Tighten the bolt as follows:
 - Grade 5 bolt - 76 ft lb (105 Nm)
 - Grade 8 bolt - 110 ft lb (150 Nm)
9. Keep turning the hex adjuster and moving the wheel arm until the wheel is adjusted properly.
10. When properly adjusted, tighten the pivot bolt (2) to 110 ft lb (150 Nm).

Depth Wheel Scrapers (Option)

Side depth wheel scrapers may be useful in moist or sticky soils that tend to accumulate on side depth wheels reducing the intended planting depth.

To adjust depth wheel scrapers:

1. Loosen the nut (1).
2. Slide the depth wheel scraper (2) toward the depth wheel until the scraper touches the tire.
3. Slide the scraper away from the wheel leaving a 1/8 inch (3 mm) gap (3).
4. Rotate the scraper left and right around the bolt, making sure it cannot touch the tire if bumped in the field. If it can touch the tire, back the scraper away from the wheel until it cannot.
5. Center the scraper angle on the bolt until the gap (3) is constant.
6. Tighten the nut (1).

Press Wheel Adjustments

Crushing Hazard

Make sure machine is secure before working on it. A falling machine can result in severe injury or death.

Press wheels are attached to each row unit body. The press wheels close the seed trench and press soil over the seed.

To provide consistent seed firming, the press wheels are free to move downward from the normal operating position. This system maintains closing/pressing action even if the row unit arm is lifted when the disks encounter obstructions.

There are three adjustments on the press wheel assembly:

1. Down pressure - an adjustable spring in the press wheel mechanism creates the down pressure needed to close the seed trench. The
amount of force needed will vary with field conditions.

2. Wheel stagger - factory setting is staggered for the best residue flow.
3. Centering - press wheels should be centered over the seed trench.

If the press wheel adjustments do not provide satisfactory furrow closing, your conditions may require alternate press wheels. A variety of press wheel assemblies are available. See your Great Plainer dealer for information.

Down Pressure

To adjust the down pressure, move the adjustment handle (1).

- For less down pressure, move the handle forward (2) toward the planter.
- For more down pressure, move the handle back (3) away from the planter.

Increased press wheel spring force may require increased row unit down force to maintain depth.

Press Wheel Stagger

To change the press wheel stagger:

1. Raise the planter.
2. Remove the bolt (1), spacers (2 and 3), lock washer (4), and nut (5).
3. Reinstall the spacers, press wheel (6), and hardware to the other hole location (7).

Press Wheel Centering

If one press wheel is running in the seed trench, or the press wheels are not centered over the trench, the angle (1) of the press wheel assembly can be adjusted as follows:

1. Determine how far and in which direction the press wheel assembly needs to move to center the wheels.
2. Raise the planter.
3. Loosen the 1/2 inch bolts (2 and 3).
4. Do not loosen the two front bolts (5).
5. Turn the hex head cam (4) under the bolt (2), and move the required amount.
6. Tighten both bolts.

Unit Mount Row Cleaners (Option)

Sharp Object Hazard

Row cleaner tines, casting edges, and coulter disks are sharp. To avoid serious injury, wear gloves when working in this area.

Martin row cleaners are unit-mounted:

- Unit-mount row cleaner (UMRC) - stand-alone
- Unit-mount coulter row cleaner (UMC-RC) - on a coulter bracket, with or without a coulter disk present.

Refer to the manual supplied with the row cleaners for further information on use, adjustment, and maintenance of row cleaners.

The row cleaners have two adjustments:

1. Wheel placement for more or less aggressive cleaning
2. Wheel height adjusted by a stop. The cleaner arms float. The stop only sets the lowest position.

The row cleaners need to be adjusted for conditions, crop changes, and as coulters and openers wear.
Ideally, cleaners contact only the trash, and do not disturb the soil. If allowed to dig, row cleaners can reduce seed coverage.

Tine tips should be at ground level for the suggested initial height.

With the planter raised, adjust the row cleaner:

1. Determine the height adjustment required. Measure from the lowest tine to the ground.
2. Support most or all of the weight of the arm to prevent injury and ease the adjustment.
3. Adjust the arm:
 - **UMRC** - Remove the bent pin (1). Support the arm at the desired height. Slide the adjustment tube (2) until the cross-tube (3) contacts the arm at the target height. Insert the bent pin in whichever hole pair is most in alignment.
 - **UMC-RC** - Loosen the bolts (4). Slide the down-stop (5) on the arm (6) back toward the pivot for shallower cleaning, or forward toward the tines for deeper cleaning. Tighten the bolts. Each possible hole pairing adjusts the tine height by about 3/4 inches (19 mm). Also check bolt tightness before each planting session, to avoid down-stop slippage.
4. Check the new height measurement.

Unit Mount Coulters (Option)

Sharp Object Hazard

> Row cleaner tines, casting edges, and coulter disks are sharp. To avoid serious injury, wear gloves when working in this area.

Crushing Hazard

> Make sure machine is secure before working on the machine. A falling machine can cause severe injury or death.

The best operating depth for coulters is 1/4 inch (6mm) above the opener depth. The coulters may have originally been set to this depth, but coulter and opener disks wear with time, and may need adjusting.

Adjust the coulter depth by mounting the coulter disk in one of the six mounting holes on the coulter bracket.

1. Raise and secure the planter. Row units may be fully lowered or locked up. Do not attempt to move the blade when the current or new position causes it to contact the ground during adjustment.
2. Remove row cleaners, if installed, to reduce risk of injury.
3. Determine the current opener and coulter depths.
4. Determine which new hole will position the coulter closer to the 1/4 inch (6mm) depth by using the table below.

<table>
<thead>
<tr>
<th>Hole Number</th>
<th>Depth of coulter disk relative to opener disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1 inch (25 mm) above</td>
</tr>
<tr>
<td>3</td>
<td>5/8 inch (16 mm) above</td>
</tr>
<tr>
<td>4</td>
<td>3/8 inch (9.5 mm) below</td>
</tr>
<tr>
<td>5</td>
<td>1/4 inch (6 mm) above</td>
</tr>
<tr>
<td>6</td>
<td>3/4 inch (19 mm) below</td>
</tr>
</tbody>
</table>
5. Remove the 5/8 x 4 inch bolt, lock washer, and nut (7).

6. Move the coulter disk to the new position.
7. Install the bolt and fasten the lock washer and nut.
8. Readjust row cleaners, if installed.
If a worn coulter cannot be adjusted to the proper operation depth, replace the coulter disk.

Coulter Row Alignment
For unit-mounted coulters, the ideal alignment is for the disk to open a furrow directly ahead of the opener disks.
To check alignment, sight along the coulter disk centerline (1), the gap between the opener disks, and the centerline between the press wheels. If they are out of alignment, either the coulter, press wheels, or both may need to be adjusted.

Operate the planter on test ground, no seed required, and verify that the opener disks are in the groove opened by the coulter, and that the press wheels are centered over the furrow. See “Press Wheel Adjustments” on page 41.
To adjust coulter alignment, loosen the four bolts that attach the coulter bracket to the row unit. The holes on the row unit are slotted (2) for adjustment.

Keep the coulter disk vertical while adjusting.
If the disk cannot be aligned, check that the spindle is using the same hole location on each side of the bracket.

■ Seed Firmer (Option)

Sharp Object Hazard
Disks are sharp. To avoid serious injury, wear gloves when working in this area.

Keeton® Seed Firmer
A Keeton® seed firmer has a polymer shape that slides down the seed trench. It traps the seeds as they exit the seed tube and firms them into the bottom of the seed trench.
The Keeton Seed Firmer is provided with a preset tension which is recommended for the first year of planting. The tension screw (1) can be tightened after the first year, according to your needs. The seed firmers should provide just enough tension to push seeds to the bottom of the trench.
Measure the distance from the ground to the head of the tension screw. This distance should be 4 to 4 1/2 inch (10.2 to 11.4 cm).
If adjustment is necessary, loosen the bolts in the mounting bracket and select different holes until the proper measurement is reached.

■ Swath Command™ (Option)
The optional Swath Command™ system replaces the standard 2-section operator-controlled clutches with clutches under console control. There are 8 sections of clutches for 16-row planters, and 6 sections of clutches for 12-row planters.
The Swath Command system automatically turns off rows when the row unit enters a non-planting area, as defined by pre-loaded information, or if the row enters an area already logged as planted during previous passes.
Refer to the Swath Command manual for setup and operation of the system.
Liquid Fertilizer (Option)

Agricultural Chemical Hazard

Some chemicals will cause serious burns, lung damage, and death. Avoid contact with skin or eyes. Avoid prolonged breathing of chemical fumes. Wear respirator and other protective equipment as required by chemical manufacturer. Seek medical assistance immediately if accident occurs. Know what to do in case of an accident.

Plugging Risk

Load chemicals just before using. If fertilizer remains in the tanks for extended periods, settling of material and system plugging will occur.

The fertilizer rate is independent of the seed rate. Fertilizer rate is set by a pump dial and a driving sprocket on a ground drive planter, or console controled for hydraulic and IRC planters.

Great Plains recommends checking with your local agronomist as soil conditions vary. Soil conditions in your area may need less or more amounts of fertilizer than represented in the charts in this manual. In any case, do not exceed 12 gal/acre (112 liter/ha) in furrow.

Loading Materials

To load material:

1. Connect the nurse tank hose to the quick-fill coupler (1) at the rear of the planter.
2. Lock the hose in place with cam lock levers.
3. Close the valve going to the inline filter located just before the pump.

Contamination Risk

Always close the valve at the inline filter when filling or storing any liquid in the tanks. Failure to do so may allow material to run out of the manifold (boom) outlets causing contamination from spillage.

4. Open the valve at the quick-fill coupler.

5. Fill the tank, then close the valve at the quick-fill coupler.
6. Disconnect the nurse tank hose.

Orifice Plates

Agricultural Chemical Hazard

Some chemicals will cause serious burns, lung damage, and death. Avoid contact with skin or eyes. Avoid prolonged breathing of chemical fumes. Wear respirator and other protective equipment as required by chemical manufacturer. Seek medical assistance immediately if accident occurs. Know what to do in case of an accident.

The orifice plate needs to be small enough to create at least 15 psi of pressure in the manifold, but large enough to prevent the manifold pressure from exceeding 85 psi.

The minimum pressure is required to even out the flow of fertilizer between rows. To reduce orifice plugging and pump wear, use the largest orifice practical for your fertilizer application rate.

The best pressure range to maintain is 15 to 40 psi to ensure optimum distribution while minimizing leakage.

Orifice size does not control rate. It is only used to create 15 to 65 psi back pressure for even flow between rows. Set application rate in gal/acre using the pump drive chart.

<table>
<thead>
<tr>
<th>Orifice Size</th>
<th>Part Number</th>
<th>Part Diameter</th>
<th>Port Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>832-052C</td>
<td>0.020 inch</td>
<td>0.20 mm²</td>
</tr>
<tr>
<td>28*</td>
<td>832-056C</td>
<td>0.028 inch</td>
<td>0.40 mm²</td>
</tr>
<tr>
<td>34*</td>
<td>832-053C</td>
<td>0.034 inch</td>
<td>0.59 mm²</td>
</tr>
<tr>
<td>48*</td>
<td>832-054C</td>
<td>0.048 inch</td>
<td>1.17 mm²</td>
</tr>
<tr>
<td>59</td>
<td>832-057C</td>
<td>0.059 inch</td>
<td>1.76 mm²</td>
</tr>
<tr>
<td>80</td>
<td>832-055C</td>
<td>0.080 inch</td>
<td>3.24 mm²</td>
</tr>
<tr>
<td>98</td>
<td>832-059C</td>
<td>0.098 inch</td>
<td>4.87 mm²</td>
</tr>
</tbody>
</table>

* Sizes standard in many fertilizer bundles. Check your accessories before ordering.
Rate Ranges vs. Orifice Size

<table>
<thead>
<tr>
<th>Orifice Size</th>
<th>Nozzle Spacing in US Customary Units*</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 in Row Spacing</td>
<td>70 cm Row Spacing</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.1-1.8</td>
<td>1.2-2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.1-3.4</td>
<td>2.3-3.7</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3.2-5.2</td>
<td>3.4-5.6</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>6.1-10</td>
<td>6.7-11</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>9.3-15</td>
<td>10-17</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>17-28</td>
<td>19-30</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>27-44</td>
<td>29-44</td>
<td></td>
</tr>
</tbody>
</table>

* Recommended Rate Range in gallon per acre. Pressure is 15-40 psi. Values based on: 5 mph and 10.7 lbs/gallon Fertilizer solution density.

<table>
<thead>
<tr>
<th>Orifice Size</th>
<th>Nozzle Spacing in Metric Units*</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 in Row Spacing</td>
<td>70 cm Row Spacing</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.1-1.8</td>
<td>1.2-2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.1-3.4</td>
<td>2.3-3.7</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3.2-5.2</td>
<td>3.4-5.6</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>6.1-10</td>
<td>6.7-11</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>9.3-15</td>
<td>10-17</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>17-28</td>
<td>19-30</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>27-44</td>
<td>29-44</td>
<td></td>
</tr>
</tbody>
</table>

* Recommended Rate Range in liters per hectare. Pressure is 103-276 kPa. Values based on: 8.0 kph and 1.28 kg/liter Fertilizer solution density.

Orifice Plate Installation

Agricultural Chemical Hazard

> Wear protective gloves when changing orifice plates and strainer screens. Consult material manufacturer or supplier documents for proper handling and steps to take if skin contact occurs.

To install the orifice plates:

1. Insert the orifice plate (1) inside the gasket (2) supplied with the nozzle.

2. Insert the gasket and orifice plate with the number side facing out the nozzle outlet (typically up).

Strainer

Agricultural Chemical Hazard

> Some chemicals will cause burns, lung damage, and death. Avoid contact with skin or eyes. Avoid prolonged breathing of chemical fumes. Wear protective gloves and other protective equipment when changing screens.

A strainer is supplied with the fertilizer pump. It is plumbed before the pump. The standard 80 mesh screen (1) should be suitable for most applications. Other screen sizes are available from Banjo Corporation.

If changing screen sizes, keep in mind the following:

- A smaller mesh (100) will keep very small manifold orifice plates from plugging so often. However, the screen will have to be cleaned more often.
- A larger mesh (50 or 30) will pass more material, but should only be considered when using large manifold orifice plates.
- A plugged or partially plugged screen will starve the pump, resulting in a reduced application rate.
- Mesh sizes from smallest to largest: 100, 80, 50, 30.
Relief Valve
A relief valve is plumbed after the pump outlet to protect the manifold and pump from excessive pressure. Any product that dumps over the relief valve will discharge from the dump line.

To set the relief valve on the fertilizer pump:
1. Unlock the plastic jam nut (1) from the relief valve knob (2).
2. Screw the knob counterclockwise two turns. Start at this setting.
3. Observe the manifold gauge (3) at the front of the fertilizer tank. Watch for relief valve discharge while operating in the field.
4. If the valve is dumping product and the gauge reads under 65 psi, stop the tractor and turn the knob clockwise 1/4 turn. Continue operating at normal field speed. Repeat this step as needed until no product is discharged from the relief valve.
5. If the pressure gauge reads above 65 psi, change to a larger orifice. Go to step 2 and repeat the steps.

Setting Fertilizer Rate

Agricultural Chemical Hazard

Some chemicals will cause serious burns, lung damage, and death. Avoid contact with skin or eyes. Avoid prolonged breathing of chemical fumes. Wear respirator and other protective equipment as required by chemical manufacturer. Seek medical assistance immediately if accident occurs. Know what to do in case of an accident.

This is only an overview of how to set the fertilizer rates. Refer to the Material Rate manual. Refer to the John Blue manual for more fertilizer pump details. Refer to your console manual for more console operation details.

Fertilizer rate is controlled by pump rate. Consistent delivery across the planter is controlled by orifice size at the row unit drop-line points.

Consistent system operation also requires a correctly adjusted relief valve and a well maintained strainer ahead of the pump. See “Liquid Fertilizer Strainer” on page 66 and

Great Plains recommends checking with your local agronomist as soil conditions can vary. Conditions in your area may need less or more amounts of fertilizer.

Fertilizer Ground Drive

Pump Damage Risk

Always disable the pump drive when not in use. Do not operate the pump when not applying material.

The ground drive liquid fertilizer option uses a positive displacement pump. For pump operation and pump maintenance, refer to the pump manual supplied with the ground drive pump option package. For fertilizer rate settings, see the Material Rate manual.

The pump is driven by a ground contact wheel (1). The fertilizer rate is independent of seed rate.

Coarse fertilizer rate is set by a sprocket (2) on the ground drive. Fine rate is set by a dial (3) on the
pump. For more information, see the Material Rate manual.

Fertilizer Hydraulic Drive

Pump Damage Risk

Always disable the pump drive when not in use. Do not operate the pump when not applying material.

The fertilizer hydraulic drive uses a fixed displacement pump driven by a hydraulic motor under console control. This section offers basic instructions to set the desired target material rate, see your console operator manual for more information.

To set the desired target material rate:

1. With your in-cab console, navigate to the Materials screen by tapping Materials from the Home screen.

2. Tap a Flow Control Material (shown as MATRL 15 for illustrative purposes only).

3. Tap Edit.

4. Set these parameters:
 - **Type** - Select Liquid Control for liquid fertilizer application.
 - **Units** - Gal/ac with gal/min will auto-populate with the selection of Liquid Control for material type.
 - **Preset Method** - Selecting Enabled will allow 10 user defined presets target rates to be entered as adjustments. Selecting Disabled will allow incremental +/- percentage adjustments from the Work Screen during application.
 - **Target Rate** - Select your desired target rate. Refer to the Material Rate manual for more information.
 - **Maximum Rate** - Establishes the maximum application rate in gal/ac that the control will allow.
 - **Minimum Rate** - Establishes the minimum application rate in gal/ac that the control will allow.
 - **Inc/Dec%** - Sets the incremental increase/decrease percentage of change that will be applied each time to the desired target rate during application when the increment/decrement is tapped from the Work Screen.
Low Flow Limit - Sets the lowest gallon per minute flow rate which the control channel will operate.

High Flow Limit - Sets the highest gallon per minute flow rate which the control channel will operate.

Material Level Alarm - Sets the level to trigger an alarm alerting of low liquid levels. The entered value is an estimate in gallons.

AccuShot Fertilizer System (Option)
The optional AccuShot Fertilizer System allows precision liquid fertilizer application during planting. For system operation, refer to the AccuShot manual supplied with the AccuShot option package.

Fertilizer Sectional Control System (Option)
The optional VisaGage II System allows for sectional control, refer to the VisaGage II manual supplied with the VisaGage II option package.

Transport

Loss of Control Hazard

Never tow an implement that weighs more than 1.5 times the weight of the tractor. Using an inadequate tow vehicle can result in loss of control, serious injury, and death.

Excessive Speed Hazard

To prevent serious injury or death, do not exceed 20 mph (32 kph) maximum transport speed. Loss of vehicle control and/or machine damage can result.

The planter can be transported with a full material load, but the added weight increases stopping distance and decreases maneuverability.

Transport only with markers folded.

Make sure the planter is securely hitched to a sufficient tractor.

Unload hoppers or bulk tank before transporting if possible.

Transport the planter only in the folded position. Make sure all cylinder locks are in place.

If any seed is in the hoppers or delivery hoses, close the seed inlet gates at the seed meters.

Check that tires are properly inflated.

Plan the route. Avoid steep hills.

Verify that the lights operate correctly. Always have lights on for highway transporting.

Comply with all national, regional, and local safety laws when traveling on public roads.

Remember that the planter is wider than the tractor. Allow safe clearance.

Transport slowly over uneven or rough terrain.

Parking

Roll-Away Hazard

There is not enough weight on parking stands to anchor planter on a slope. Do not unhitch planter while on a steep slope. Always block tires when unhitching from tractor.

Follow these steps when parking the planter for periods of less than 36 hours. For longer periods, see “Storage” on page 67.

1. Position the planter on firm, level ground.
2. Fold markers.
3. If equipped with fertilizer, flush the system and protect the pump against corrosion.
4. Fold the planter.
5. To prevent rolling, block the tires securely.
6. If the ground is soft, place a board or plate under each stand to increase contact area.
7. Remove the pins (1) and position the parking stands in the parking position. Insert the pins.
8. Lower the tractor 3-point or hydraulic hitch until the planter is resting on the parking stands.
9. Set all implement hydraulic circuits to float to relieve pressure in the lines.

10. Shut down the hydraulics and unplug the hydraulic lines from the tractor. Do not allow hose ends to rest on the ground.

11. Unplug the light harness and console harness. Protect the connections with any plugs or caps provided.

12. Unhitch the planter from the tractor.
 a. For 2-point hitch - unhook the tractor 3-point from the planter.
 b. For hydraulic hitch - use the hitch cylinder to lift the hitch off the tractor drawbar.

Dickey-john PM300 with Switch Box (Option)
The PM300 Seed Monitoring System console and switch box may be mounted in-cab for use. The kit does not include, but will require, fasteners for the in-cab mounting brackets.

The PM300 Seed Monitoring System with Switch Box includes:
- cables for power,
- a speed sensor,
- a sensor harness,
- an in-cab mounting bracket,
- PM300 operator manual,
- the PM300 console, and
- the switch box.

PM300 Seed Monitoring System
The PM300 Seed Monitoring System option is typically factory or dealer installed, though field installation is possible. Installation instructions for the kit are included in the PM300 operator manual. PM300 Seed Monitoring System will report the following information on the console:
- ground speed,
- up to two hopper levels, and
- seed rate at each row unit seed tube.

Medium and large seeds are individually counted with high accuracy. Small seeds, such as Milo, may be more difficult to sense, and instead, the seed monitoring system will indicate seed blockage.

Three inputs are required before beginning planting operation:
- number of rows,
- row spacing, and
- the ground speed constant.

Selecting a factory programmed planter configuration will provide:
- planter row width,
- number of rows,
- implement width, and
- row types.

To save time, prior to field use, up to three planter configurations may be entered in the console for the seed monitoring system. See Material Rate manual for values.

For console operation instructions, see Dickey-john Operator manual (11001-1372).

Switch Box
The switch box allows for in-cab use of hydraulic functions for your planter.

The switch box will perform the following operations:
- planter raising/lowering,
- planter folding/unfolding.
dependent electric clutch control for each side of the planter, if installed,
- hydraulic hitch operation, if installed, and
- marker raising/lowering, if installed.

On the switch box, toggle the on/off switch to ON for power for use.

Electric Clutch Control (Option)

If planter is configured with the electric clutch control with ground drive, the switch box will control the electric clutches. On the switch box, the individual left and right clutch switches allow for the left and right row section to be active or inactive during field operations. The left clutch switch will control the left wing row section and the right clutch switch will control the right wing row section. During planting operations, each clutch switch indicates:

- a lit GREEN light for active row section, and
- a lit RED light for inactive row section.

To select the left row section for active operation:

- toggle the left clutch switch downwards; a lit GREEN light on the left clutch switch will indicate the necessary selection has been made.

To select the right row section for active operation:

- toggle the right clutch switch downwards; a lit GREEN light on the right clutch switch will indicate the necessary selection has been made.

Both the left and right row sections may be selected to be active at the same time.

Raising Planter with Switch Box

Crushing Hazard

A raised planter slowly lowers when held up only by hydraulic circuit, resulting in serious injury for personnel trapped beneath row units. Use hydraulic circuit to hold the raised planter only for brief periods, such as field turns and during cylinder lock installation. Use cylinder locks at all other times.

Planter Damage Risk

- The planter mainframe raises and lowers independently of the tongue.
- The planter may be fully raised at any time.

1. On the switch box, toggle the marker/fold switch to MARKER.
2. On the switch box, toggle the lift/hitch switch to LIFT.
3. Extend tractor lift circuit lever to extend the lift cylinders.
4. Set the lift tractor circuit to neutral.
5. Install cylinder locks if raising for transport, parking, storage, adjustments, or storage.

Lowering Planter with Switch Box

Planter Damage Risk

Do not lower the planter when turning to prevent damage to the planter.

If cylinder locks are installed, the planter cannot be lowered.

1. On the switch box, toggle the marker/fold switch to MARKER.
2. On the switch box, toggle the lift/hitch switch to LIFT.
3. Retract tractor lift circuit lever to retract the lift cylinders until fully lowered to the ground.
4. Set the lift tractor circuit to neutral.

Unfolding/Folding with Switch Box

Pinch Point and Crushing Hazards

Moving parts can pinch or crush causing serious injury or death. Distance between tractor and planter will decrease when unfolding and increase when folding. Keep all persons away when folding or unfolding the planter.
Tire Damage Risk
Make sure the tractor is in neutral before folding or unfolding to avoid damage to tires.

Machine Damage Risk
Raise the hitch before unfolding. If hitch is not raised, wing hooks will remain in place. Wings will not be able to unfold, and machine damage is possible. If hydraulic hitch is installed, see “Hydraulic Tongue Height Adjustment” on page 53.

Unfolding

Machine Damage Risk
Frame and opener damage is likely if the planter is operated when tongue latch hook is not latched.

The distance between the tractor and planter frame will decrease by about 10 ft (3 m) during unfolding. The planter and/or tractor will move during this operation.

1. Move the planter to level ground with adequate overhead and side-to-side clearances for the unfold operation.
2. Put the tractor in neutral.
3. Make sure markers, if installed, are fully folded. See “Markers with Switch Box (Option)” on page 53.
4. If the planter is lowered, activate the lift hydraulics. Raise the planter until the lift hydraulics are fully raised. See “Raising Planter” on page 16.
5. Raise the hitch.
6. On the switch box, toggle the marker/fold switch to FOLD.
7. Retract tractor hydraulic circuit lever to unfold wings.
8. Unfold the planter until cylinders are fully extended.
9. Unfolding is complete when the roller on top of the tongue is engaged by the tongue latch hook.

Folding
Fold the planter for moves between fields, transport over public roads, parking, and storage.

The tongue is raised and lowered during this operation. See “Hydraulic Tongue Height Adjustment” on page 53.

The distance between the tractor and planter frame will increase by about 10 ft (3 m) during folding. The planter and/or tractor will move during this operation.

1. Set tractor circuit lever for the fan(s) and hydraulic tongue, if installed, to neutral.
2. Move the planter to level ground with adequate overhead and side-to-side clearances for the fold operation.
3. Make sure markers, if installed, are fully folded. See “Markers with Switch Box (Option)” on page 53.
4. Retract tractor circuit lever to raise lift cylinders until the planter is fully raised.

The hydraulic cylinder on the tongue latch hook will operate during the fold/unfold operation. Ensure the tongue latch hook is fully down over the roller before beginning field operations.

10. Lower the 2-point hitch, or the hydraulic hitch, if installed, to planting position.

For the hydraulic hitch, if installed, See “Hydraulic Tongue Height Adjustment” on page 53.

11. On the switch box, toggle the marker/fold switch to MARKER.
12. With the planter still in full lift, remove the cylinder locks.
13. Lower the planter. See “Lowering Planter” on page 16.
5. Set the tractor circuit to neutral to hold planter at a lift.
6. Remove the cylinder locks from storage and install on the transport wheel cylinders.
7. Raise the hitch.
8. Put the tractor in neutral.
9. On the switch box, toggle the marker/fold switch to **FOLD**.
10. Extend tractor circuit lever to fold wings.
11. Fold the planter.
12. Retract the tractor circuit lift lever to fully raise the outer wing gauge wheels.
13. Make sure the wing hooks are resting on the tongue.

Hydraulic Hitch with Switch Box (Option)

Machine Damage Risk

Do not use the hydraulic hitch with a tractor equipped with a 3-point hitch.

If installed, the hydraulic hitch will be used to perform these tasks:
- Hitching planter to tractor, and
- Tongue height adjustments for field operations, transport, and storage.

Hitching with Switch Box

1. Move the tractor close to the planter hitch.
2. Connect the hydraulic hoses for the tongue circuit in order to raise and lower the tongue. Allow slack for hitch movements.
 - The hydraulic hose connections must be made before hitching to allow for raising and lowering of hitch.
3. Make the electrical connections for the switch box and for the console to the electrical harness. On the switch box, toggle the lift/hitch switch to **HITCH**.
4. On the switch box, toggle the marker/fold switch to **MARKER**.

5. Retract the tractor circuit lever to raise the hydraulic hitch high enough to clear the drawbar.
6. Back the tractor to align the drawbar and hitch. Pin the planter to the drawbar.
7. Raised the hitch enough to take pressure off the parking stands.
8. Remove each pin (1) and slide up the parking stand.

![Image of hydraulic hitch with switch box](TP-71127A)

9. Install the pins in the bottom hole (2) of the parking stand.
10. Connect remaining hydraulic hoses to the tractor. See “Hydraulic Hose Connections” on page 11.

Hydraulic Tongue Height Adjustment

In addition to hitching, a height adjustment is required to raise or lower the tongue during fold and unfolding to engage/disengaged wing hooks.

1. On the switch box, toggle the lift/hitch switch to **HITCH**.
2. On the switch box, toggle the marker/fold switch to **MARKER**.
3. Retract or extend the tractor circuit lever, as needed, to raise/lower the tongue to the desired tongue height.

Markers with Switch Box (Option)

Electrocution Hazard

Check for overhead lines before operating markers. If a marker contacts an electrical line, all metal parts of the planter and tractor can have lethal voltages present. There may be no indication of the condition until a person completes the circuit to ground. At higher voltages, electrocution can occur without direct contact.

1. On the switch box, toggle the marker/fold switch to **MARKER**.
Leave the marker/fold switch in the *MARKER* position for field operations; it will act to lock the folding system.

2. If the planter is equipped with an auxiliary hydraulic drive system, set the selector valve (1), near the sequence valve (2), at the marker base on the left wing to “Marker”.

Dual markers are equipped with a sequence valve (2) to control lift sequence. Starting with both markers up, the operational sequence is:

1. Extend tractor hydraulic lever; right marker lowers while left marker stays up.
2. Retract tractor hydraulic lever, right marker raises while left marker stays up.
3. Extend tractor hydraulic lever, left marker lowers while right marker stays up.
4. Retract tractor hydraulic lever; left marker raises while right marker stays up.
5. Pattern repeats.

To move both markers in the lowered position at the same time, activate hydraulic lever to lower one marker. After marker is lowered, move lever to opposite position then quickly reverse lever and hold until the other marker is lowered.
Maintenance

Proper servicing and maintenance is the key to long implement life. With careful inspection, you can avoid costly maintenance, downtime, and repair.

Always turn off the tractor and remove the tractor key before making any adjustments or performing any maintenance.

Crushing Hazard
A falling implement can cause severe injury or death by crushing. Always have cylinder locks in place and the frame blocked up when working on the implement.

High Pressure Fluid Hazard
Escaping fluid under pressure can have sufficient pressure to penetrate the skin. Check all hydraulic lines and fittings before applying pressure. Use paper or cardboard, not body parts, and wear heavy gloves to check for suspected leaks. If injured, seek immediate medical attention from a physician familiar with this type of injury.

Component Damage Risk
When cleaning the planter, to avoid damage to IRC components, do not powerwash on or around these electrical components.

Maintenance Schedule

<table>
<thead>
<tr>
<th>Maintenance Point</th>
<th>Type of Maintenance</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel hardware (page 101)</td>
<td>Check torque</td>
<td>Daily</td>
</tr>
<tr>
<td>Wheel bearings (page 67)</td>
<td>Clean and pack</td>
<td>Seasonally</td>
</tr>
<tr>
<td>Marker disk hub bearings (page 67)</td>
<td>Clean and pack</td>
<td>Seasonally</td>
</tr>
<tr>
<td>Chains (page 63)</td>
<td>Inspect and lubricate</td>
<td>Periodically</td>
</tr>
<tr>
<td>Chain slack (page 63)</td>
<td>Tighten as needed</td>
<td>Within first 8 hours, then seasonally</td>
</tr>
<tr>
<td>Seed meter disks (page 63)</td>
<td>Inspect for damage or wear</td>
<td>Each time seed disks are removed</td>
</tr>
<tr>
<td>Seed meter brushes (page 61)</td>
<td>Clean and inspect for wear</td>
<td>Each time seed disks are removed</td>
</tr>
<tr>
<td>Hydraulic drive filter (page 56)</td>
<td>Replace element</td>
<td>When indicated by pop-out indicator</td>
</tr>
<tr>
<td>Liquid filter strainer (page 66)</td>
<td>Clean</td>
<td>Several times per season, end of season</td>
</tr>
</tbody>
</table>

Regular Maintenance

☑ After using the planter for several hours, check all bolts to be sure they are tight. See “Torque Value Chart” on page 101.
☑ Remove excess slack from chains. Clean and use chain lube on all roller chains as needed. See “Chain Slack” on page 63.
☑ Maintain proper air pressure in the tires. See “Tire Information” on page 101.
☑ Keep disk scrapers properly adjusted. See “Depth Wheel Scrapers (Option)” on page 41.
☑ Clean the planter on a regular basis. Regular and thorough cleaning will lengthen equipment life and reduce maintenance and repair needs.
☑ Lubricate areas listed under “Lubrication” beginning on page 66.
☑ Replace any worn, damaged, or illegible safety decals by obtaining new decals from your Great Plains dealer. See “Safety Decals” on page 5.
Hydraulic System

High Pressure Fluid Hazard

Escaping fluid under pressure can have sufficient pressure to penetrate the skin. Check all hydraulic lines and fittings before applying pressure. Use paper or cardboard, not body parts, and wear heavy gloves to check for suspected leaks. If injured, seek immediate medical attention from a physician familiar with this type of injury.

High Pressure Fluid Hazard

Do not attempt to make hydraulic system repairs. Great Plains strongly recommends that all hydraulic system repairs to be completed by a trained professional who is knowledgeable about how to safely complete hydraulic system work. You should only maintain or adjust your hydraulic system as described within this manual. Compromising a closed hydraulic system can cause serious injury or death.

The hydraulic system is a closed system and will come from the factory fully charged and bled.

Your planter is equipped with lift and fold hydraulic cylinders designed with rephasing ports which will allow for the release of air from the hydraulic system. See “Lift and Fold Hydraulics” on page 16.

Hydraulic System Inspection

Routine hydraulic maintenance will require inspection of hydraulic lines, valves, fittings, and cylinders for any signs of damaged or worn parts, and the presence of hydraulic fluid. If you discover or suspect a leak, or damaged or worn parts, contact your Great Plains dealer for service on your hydraulic system by a trained professional.

Hydraulic Drive

High Pressure Fluid Hazard

Escaping fluid under pressure can have sufficient pressure to penetrate the skin. Check all hydraulic lines and fittings before applying pressure. Use paper or cardboard, not body parts, and wear heavy gloves to check for suspected leaks. If injured, seek immediate medical attention from a physician familiar with this type of injury.

Hydraulic Drive Filter

Contamination is the most common cause of performance problems and premature wear in a hydraulic drive system. Before each connection is made, properly clean quick-connect couplers before you attach the hydraulic hoses to the tractor.

All hydraulic fluid is filtered through the high pressure filter (1) which contains a replaceable filter element (2), and it provides protection to the hydraulic components of the drive if properly maintained.

The high pressure filter (1) is equipped with a pop-out indicator (5) when the replaceable element (2) is clogged, and should be changed immediately. Normal service life of the replaceable element will vary based on the precautions taken to minimize contamination at the couplers and route service of the tractor filtration.

To replace the element:

1. Unscrew the lower filter canister (3) from the filter (1); catching and disposing of the used fluid.
2. Remove and discard the filter element (2).
3. Install a new filter element (2).
4. Clean the canister threads (4) and lube the O-ring with hydraulics fluid, then reinstall.
5. Reset the pop-out indicator (5) if necessary.

Keep a filter element (2) on hand. Great Plains recommends changing the filter element at least seasonally, or when alerted by the pop-out indicator.
Markers

Marker Shear Bolt

Equipment Damage Risk

Replacing the shear bolt with a higher grade bolt can result in marker damage.

Do not replace the shear bolt with a lower grade bolt, or smaller bolt, or you may experience nuisance shears.

The marker arm is attached to the marker body with a 7/16 x 2 inch Grade 5 shear bolt. If the shear bolt breaks, replace with Great Plains part number 802-589C or equivalent.

If an identical Grade 5 bolt is not immediately available, temporarily substitute a metric M12 x 1.5 x 6.4 mm Class 8.8 bolt and nut.

If conditions are causing frequent shears, keep spare bolts in the storage holes of the marker shear base.

Marker Disk Lubrication

If the grease seal cap (1) for the marker disk hub bearings is damaged or missing, disassemble and clean the hub. Repack with grease and install a new seal or grease cap.

In-Cab Consoles

Avoid the direct spray of water on in-cab consoles as it could compromise the console housing and cause damage. Keep all electrical connections free of dirt and grease and do not tightly bind electrical cords. Disconnect the electrical harness whenever parked.

Between planting seasons, store any in-cab consoles inside a dry environment free from pests, temperature variances.

Material Clean-Out

Possible Dust and Chemical Fume Hazard

Clean-out can create dust and fumes from seed residue and seed treatment. Wear a respirator and any other protective equipment specified by the seed and/or seed treatment supplier.

Entrapment and Suffocation Hazard

A seed hopper that is full, or appears full, can be an entrapment hazard. You can sink all the way into the grain and suffocate in a matter of seconds. Never enter a seed tank for loading, unloading, or routine maintenance. Keep lid tightly closed during operation.

Clean-Out Door Damage Risk

Make sure clean-out doors are closed before folding or unfolding the planter to avoid damage to the doors.

Planter Damage Risk

Do remove the strainer from the hopper as it prevents larger foreign matter from clogging the air system.

When planting is completed, it is common that some seed remains in the bulk seed hopper, airbox, hose lines, or meters.

The following sections will complete a system material clean-out:

- ✓ Bulk seed tank clean-out
- ✓ Air box clean-out
- ✓ Air system clean-out
- ✓ Seed meter clean-out
- ✓ Seed tube clean-out
- ✓ Fertilizer clean-out, if installed

If using the probox seed box, remove the probox seed box, if desired or slide door closed before cleaning the rest of the material from the planter.
Bulk Seed Tank Clean-Out

Possible Dust and Chemical Fume Hazard

Clean-out can create dust and fumes from seed residue and seed treatment. Wear a respirator and any other protective equipment specified by the seed and/or seed treatment supplier.

When planting is completed, it is common that some seed remains in the seed tank, air box, hose lines, or meters.

To do a complete system clean-out:
1. Empty the air box (and seed tank, if desired).
2. Blow residual seed to the meters.
3. Clean out the meters with the fan running.

Air Box Clean-Out

Perform air box clean-out with the fan off.
1. Place a tarp or large container under the air box to catch the seed.
2. If cleaning the air box with seed in the bulk tank, or to clean out air box because of an obstruction:
 a. Loosen the wing nuts (1) and slide the door cover up on each side of the air box. Make sure the slots (2) are uncovered. Tighten wing nuts.
 b. Remove the shut-off gate (3) from storage position and slide into slots. Secure with lynch pin.
3. Open the clean-out doors (4) on the bottom of the air box. Seed in the air box will immediately fall out of the air box.
4. Tap on the sides of the air box to dislodge any seed.
5. Close the clean-out doors. Return the shut-off gate to the storage position and close the door cover.

Clean-Out Door Damage Risk

Make sure clean-out doors are closed before folding or unfolding the planter to avoid damage to the doors.

6. Perform an air system clean-out to remove any remaining seed from the air box and all seed in the meters.

Air System Clean-Out

1. Place a tarp or large container under the air box clean-out to catch seed.
2. Open the air box clean-out doors to empty seed from the air box.
If there is seed in the bulk tank to be emptied, the shut-off gate can be inserted (see “Air Box Clean-Out”) to control seed flow.
3. Close the air box clean-out doors.
4. Turn on the delivery air fan and let it run.
If most of the meters are shut off, reduce the fan speed as necessary to obtain a low meter pressurization.
5. Start at one end of the planter and clean out the meter (see “Meter Clean-Out Container” on page 59). Use a bucket or the funnel to catch the seed.
 a. Use the meter gate to start and stop seed flow if using a small container.
 b. Close the meter gate.
 c. Repeat the procedure for all meters.
6. During air system clean-out, it is common for a few seeds to dislodge and make their way to meters already cleaned. To avoid seed size causing problems for the next disk to be used, and to avoid crop mixing, open and close all meter gates to remove any stray seed.

Air Box Residue Clean-Out

Clean-Out Door Damage Risk

Make sure clean-out doors are closed before folding or unfolding the planter to avoid damage to the doors.

i

Flushing the air box with water is not recommended. If this is done, make sure to operate the fan for an extended period to completely remove any moisture before storing or before field operations.

Planting in extremely dusty conditions, particularly dusty and humid conditions, can lead to residue.

Great Plains | 411-681M | 11/11/2020
buildup inside the air box. This residue can cause seed delivery blockages.

If there is seed in the bulk tank, insert the shut-off gate in the air box (see “Air Box Clean-Out”).

Open the clean-out doors and inspect the inside of the air box. If any areas inside the air box are partially or completely blocked, follow the clean-out instructions below.

1. Park the planter at a suitable location for clean-out.
2. Set out a tarp to recover any seed still in the air box.
3. With the shut-off gate (3) still in place, open the air box clean-out doors (4).
4. Use a marker to identify the hoses on the seed hose ports.
5. Disconnect the clamps and remove the hoses. Further disassembly of the air box is not recommended.
6. Break up any buildup. Use a seed tube brush, hooked tool, or wire to clean out smaller fragments. Use a vacuum to clean out the rest.
7. Inspect the seed hose ports. Break up any deposits and vacuum out from the clean-out doors.
8. With all ports and doors open, operate the planter fan to blow up any remaining loose residue.
9. Reconnect the seed hoses.
10. Close the clean-out doors. Return the shut-off gate to the storage position and close the door cover.

Meter Clean-Out Container

A container for meter clean-out is stored at the left end of the planter. This container can hold all the seed in a meter and inlet.

The container can also be converted to a funnel for complete system clean-out.

Material and tools needed for the conversion are:

- A length of 1-3/8 inch (3.5 mm) ID hose (2).
- A worm drive clamp (3) with a working diameter of 1-3/8 inch to 2-1/4 inch.
- A hacksaw with a fine-toothed blade.

The funnel wall is thin ABS. Scissor-type pipe-cutting tools may fracture it. Rotary-type pipe cutting tools may slip off.

To convert the container (1):

1. Trim the sump (4) with the hacksaw.
2. Slide the hose (2) fully onto the funnel tip.
3. Secure with the clamp (3). Do not over-tighten the clamp or the funnel wall will be crushed.

Meter Clean-Out

Attach the container/funnel to the housing of the seed meter to free your hands for other tasks during clean-out.

1. Close the seed inlet gate on the meter to minimize the seed volume when the disk is removed.
2. Remove the rain cover. The container/funnel cannot be snapped in place with the rain cover installed.
3. Align the left (rear) end of the container/funnel lip (1) with the top of the lower (rear) rain cover latch ear.

4. Place the right (front) end of the container/funnel lip (2) between the meter housing and the seed tube.

5. Rotate the container/funnel forward until the slot engages a tab on the bottom center of the meter housing (3).

6. Remove the seed disk.

7. Slowly open the seed inlet gate to empty the seed.

8. If the air system is running, there may be more seed than the container can hold. Use the seed inlet gate to turn off seed flow to empty the container.

9. Clean seed from all brushes. A shop vacuum is recommended to clean the brushes.

10. Inspect the brushes.

11. Rotate the container/funnel clockwise to remove and empty.

12. If the planter will be used again:
 a. Install the next seed disk for the operation.
 b. Set the inlet gate for the seed.

13. If the planter will be stored:
 a. Close the seed inlet gate.
 b. Do not put a seed disk back in the meter.
 c. Reinstall the rain cover.

Alternate Meter Clean-Out

Use a shop vacuum cleaner with a narrow hose nozzle to clean out a meter.

- Close the seed inlet gate.
- Release the disk clamp while holding the seed disk against the meter.
- Tip the top of the disk away from the meter.
- Insert the shop vacuum hose nozzle and remove the seed.
- Open the gate to allow seeds in the inlet and the drop hose to flow to the shop vacuum hose nozzle.

Seed Tube Clean-Out

The seed sensor in the seed tube can have a buildup of dust, dirt, and seed treatment which can cause false low population alarms.

If the seed meter is empty, remove the seed disk and insert the seed tube brush (part number 891-259C) into the seed tube from above. With the planter raised, you can insert the brush from below, whether the meter is empty or not.

Fertilizer Tank Clean-Out

Agricultural Chemical Hazard

Some chemicals will cause serious burns, lung damage, and death. Avoid contact with skin or eyes. Avoid prolonged breathing of chemical fumes. Wear respirator and other protective equipment as required by chemical manufacturer. Seek medical assistance immediately if accident occurs. Know what to do in case of an accident.

Chemical Hazard

Store and dispose of unused chemicals as specified by the chemical manufacturer.

1. If the pump has already been filled with RV antifreeze for storage, close the pump valve.

2. Move the planter to a location suitable for draining the material. A site with access to rinse water is best.

3. Open the quick-fill valve to allow leftover material to drain.

4. Open the tank lid. Check for build-up, sedimentation, and foreign matter, particularly any large objects.

5. Slowly open the tank valve handle.
6. Power-wash the inside of the tank from above.
7. When the tank is clean and drained, close the tank valve.
8. Close the tank lid.
9. Wash all spilled fertilizer off the planter.

Seed Meter Brushes

Possible Chemical Hazard

Brushes will have talc and graphite residue, and may have residue of hazardous seed treatments. Wear a respirator for brush cleaning.

A HEPA vacuum cleaner is recommended for brush cleaning. Washing brushes is not recommended and may cause matting. Do not scrape the brushes with sharp instruments.

With proper maintenance, bushes normally last several seasons before needing replacement.

The first indications of excess brush wear or damage are normally observed on the console or in air system operation

- If the tufted brushes (1) are worn or damaged, the seed doubles rate rises, increasing population.

Finding an occasional cracked seed hung up on a tuft fiber is not uncommon, and is not an indicator that brush maintenance is required. Remove the seed and continue with operations.

- If the strip brushes (2) are worn or damaged, air pressure regulation may become unstable or require increasing fan speed over time.

- If the seed drop brush (3) is worn or damaged, its anti-static effect may fade, which can result in skips due to smaller seeds failing to release, and lower population.

If an obvious groove is worn in the drop brush, replace the brush.

Seed Meter Brush Replacement

Brushes are designed for long life and last multiple seasons before needing replacement. Excess doubling that does not respond to adjustments are an indication when brushes are worn out.

See the Parts manual for current brush replacement part numbers.

Tufted Brush Replacement

Performance Risk

It is critical that no debris be caught between the tufted brush and mounting surface. Even objects as thin as paper can negatively impact meter performance.

1. Remove and save both bolts (1) and nuts.

2. Remove the tufted brush assembly (2), and replace with a new assembly.

3. Insert the bolts and start the nuts. Carefully tighten each nut just until there is no play under the screw heads.

4. Add a half turn to the nuts.

Fracture Risk

Do not tighten the fasteners to normal torque or the brush plate may fracture.
Strip Brush Replacement

Do not loosen or remove any of the bolts (1) retaining the brush holder.

1. Insert the flat blade of a large screwdriver into the slots of the brush holder snaps (2).
2. Turn each snap clockwise to release the brush holder (3).
3. Be prepared to catch the drop brush (4) which will fall loose.
4. Slide the brush holder left and up to free the front edge from under the washer (5).
5. Remove the brush holder.
6. Remove used strip brushes (6) from the holder by sliding them down out of the grooves.
7. Insert replacement strip brushes in the grooves at the holder bottom so the notched ends (7) are at the bottom.
8. Insert the brush holder and check the strip brush positioning.

a. The ends of the long brush must fit snugly into the meter housing grooves at the top (8) and lower rear (9).

b. The bottom end of the short brush must fit snugly in the lower front housing groove (10).

c. If any significant force is required to seat the brush holder, a strip brush is likely too high or too low.

9. When the strip brushes fit correctly, position the drop brush (4), and seat the brush holder (3).
10. Starting with the bottom snap, swing the snaps (2) back in place.

Seed Drop Brush Replacement

1. Insert the flat blade of a large screwdriver into the slots of the brush holder snaps (2).
2. Turn each snap clockwise to release the brush holder (3).
3. Prepare to catch the drop brush (4) which will fall loose.
4. Slide the brush holder left and up.
5. Remove the drop brush.
6. Position a new drop brush so the brush is flat against the back of the meter housing, and under ridges on the leading edge of the brush holder.
7. Slide the brush holder forward and down to engage the drop brush.
8. Starting with the bottom snap, swing the snaps (2) back in place.

Knockout Brush Replacement

1. Remove the knockout brush (1) from the seed meter rain cover.
2. Position the new knockout brush under tabs (2) and snap in place.

Seed Disk Maintenance

When removing seed disks, inspect for wear and damage. If there is any seed dust or treatment buildup in the cells (1), or along the raised wiper ridges (2), clean the disks and reinspect.

Replace the disks for:
- Chips at the outer edge (3). These chips will leak air.
- Chips at the edges or in surfaces of the cell pockets (1). These chips can leak air and/or affect singulation.
- Cracks over 2 inch (5 cm) long in the working face (4) of the disk, or any cracks in the ridges or grooves on the face.
- Warping - if any part of the disk does not press firmly on the seed drop brushes in operation.
- Wear - if a wiper ridge (2) is worn away.

If the cells are worn through, or the air ports (5) have enlarged, replace the disk.

2. Position the new knockout brush under tabs (2) and snap in place.

Cleaning and Storing Seed Disks

Possible Chemical Hazard

Seed disks will have talc and graphite residue, and may have residue of hazardous seed treatments. Do not wash disks where food is prepared or where cookware or dinnerware is washed. Wear gloves when washing disks. Avoid spray.

Use warm or hot water, mild soap, and a sponge or soft brush to remove buildup on seed disks.

If disks are washed, allow to dry completely before storage.

Keep original shipping cartons for disk storage. Otherwise, store on edge (not leaning), or stacked horizontally on a spindle, to eliminate any risk of warps.

Any seed residue on disks may attract pests. Fully enclose dry disks to prevent rodent damage.

Chains

Chain Lubrication

Lubricate chains any time there is a chance of moisture, and when being stored at the end of the planting season. Use a multi-purpose spray lubricant.

Chain Slack

Initially check the drive chains after the first 8 hours of drill use. The new chain slack tends to increase during the first few hours of operation due to seating. After the first 8 hours, check the chains seasonally.

1. Measure the span (1) for allowable slack:
Locate the longest span of each chain (usually the span which does not run through the idlers).

2. Determine the ideal slack:

<table>
<thead>
<tr>
<th>Chain Type</th>
<th>Chain Slack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long chains over 36 inch (91 cm)</td>
<td>1/4 in/ft (2.1 cm/m)</td>
</tr>
<tr>
<td>Vertical short chains</td>
<td>1/4 in/ft (2.1 cm/m)</td>
</tr>
<tr>
<td>Horizontal short chains</td>
<td>1/2 in/ft (4.2 cm/m)</td>
</tr>
</tbody>
</table>

3. Measure the current slack (2):
 At a right angle to the chain span at the center of the span, deflect the chain in both directions. The slack is the distance of the movement.

4. Adjust the idlers for ideal slack.

Chain Clips
Whenever mounting a chain, make sure the clip at the removable link is positioned to minimize snags.
Install the clip with the open end facing away from the direction of chain travel.

Seed Meter Drive Chain
When performing seasonal checks, lower the planter to put the chain at minimum idler spring tension.
Lift the spring off the idler assembly. Check that the idler pivots freely. Re-attach the spring.

Side Depth Wheels

Sharp Object Hazard
Disks are sharp. To avoid serious injury, wear gloves when working in this area.

1. Lift the side depth wheel off the ground.
 Move the tire in and out to check for end play.
 Check for roughness in the bearing by rotating the wheel. If the bearings are rough, inspect and replace if necessary.

2. The side depth wheels are preset at the factory. With normal wear, it may become necessary to make adjustments so the wheel remains close to the disk.
Loosen the clamp bolt (1) and slide the depth wheel arm (2) in to take up the gap between the wheel and disk.
If more adjustment is needed:
 a. Remove the bolt (3) and wheel (4).
 b. Remove the shims (5) from the inside of the wheel and place them on the outside of the wheel (6).
Always place removed shims from the inside to the outside. When installed, the wheel should turn freely and not hit the arm at the curve. Do not add any more shims than necessary.
 c. Disassemble the depth wheel arm (2) from the row unit.
 d. Remove the bushing (7) from the sleeve (8) and check for wear. If necessary, replace the bushing.
 e. When reinstalling the depth wheels, align the tab on the hex adjustment (9) with the notch in the bushing. Install the bolt and tighten.
 f. Adjust the depth wheels. See “Disk Contact Adjustment” on page 39.

Disk Separators and Scrapers

Sharp Object Hazard
Disks are sharp. To avoid serious injury, wear gloves when working in this area.

1. Remove the side depth wheels from the arms to access row unit disks and scrapers.
2. With the unit raised, check the disk separator (1) for wear. Replace separator if it is 1/2 inch (13 mm) wide or narrower. To replace:
 a. Remove the disk (2).
 b. Drive out the roll pins (3).
 c. Install the new spreader.
 For proper operation, the scraper separator must be a little loose in the holder and between the blades.

3. When reinstalling disks, put two shim washers (4) between the bearing and shank on each disk. Tighten the bolts.
 You may need fewer inside shim washers on worn disks. Check disk contact (see page 39).

4. Check that outside disk scrapers (5) are formed to the disks to help remove any mud. Bend or twist the scrapers to fit the disks as necessary.
 After every 200 acres (80 hectares) of operation, check outside scrapers for proper adjustment and wear. Replace the outside scrapers as necessary.

Seed Flap Replacement

To replace a seed flap (1):

1. Use a needle nose pliers or similar tool to grasp the T at the top of the flap.
2. Pull up to pull the flap up out of the metal bracket (2).

3. Push the new seed flap down through the metal bracket until the flap snaps into place with the T top resting on top of the bracket.

Fertilizer System

Agricultural Chemical Hazard

Some chemicals will cause serious burns, lung damage, and death. Avoid contact with skin or eyes. Avoid prolonged breathing of chemical fumes. Wear respirator and other protective equipment as required by chemical manufacturer. Seek medical assistance immediately if accident occurs. Know what to do in case of an accident.

Pump Damage Risk

Do not leave fertilizer or fertilizer residue in the pump. Do not allow air to enter the pump. Even for short periods of storage, air entering the pump causes rapid and severe corrosion.

Proper attention to maintenance, end of the day clean-out, and end of season clean-out and winterization, can substantially increase the life and reliability of your fertilizer system.

Protect the pump, and clean the tanks, strainers, lines, and nozzles to avoid costly and time consuming repairs at the next season.

Fertilizers are usually highly corrosive to metals other than stainless steel. Suspension fertilizers can clog system components in storage.

Refer to the pump manual for detailed maintenance.

1. Flush the entire system with clean water. Do this at the field last treated, or other location compliant with the chemical supplier clean-up instructions.
2. Remove the strainer and drain it. Drain all lines and tanks completely to prevent freezing damage.
3. Flush the pump according to the pump operator manual. Fill the pump with RV antifreeze and cap off.

Liquid Fertilizer Strainer

The fertilizer system uses an in-line strainer to keep damaging particulates out of the pump. The strainer can become clogged over time, reducing the pump rate. Clean the strainer several times per season. Do not wait until application rates fall below target. Higher quality liquid fertilizers may require less frequent cleaning. Disassemble and clean the strainer before storage to prevent caking.

In-Season Filter Cleaning

1. Shut off the ball valve at the filter to minimize product spill.
2. Unscrew and remove the bottom canister (1) of the filter (2).
3. Wash the filter cartridge (2) with water or replace with new cartridge, if necessary.
4. Reinstall the cartridge, canister, and turn on the ball valve.

End of Season Filter Cleaning

1. Load 10 to 15 gallons (40 to 60 liters) of clean water in the tank.
2. Pump most of the water through the system. If doing this by hand-turning the ground drive wheel, first install the largest drop-line orifice size and set the pump adjuster to maximum to increase flow.
3. With the valves open, remove the filter canister.
4. Clean the strainer and canister.
5. Fully drain the tanks and lines.
6. Reinstall the strainer and canister.
7. Add 2 pt (1 liter) of RV antifreeze to each tank.
8. Pump until the tank is just empty. Some fluid will remain in strainer.

9. Open the supply line above the pump inlet. Add RV antifreeze and operate the pump until it is filled.

Lubrication

If any movable parts such as levers, pivots, and clamps are not moving smoothly due to rust or hindering material, do not attempt to force parts into motion. Instead, remove the rust or unwanted material and apply oil or grease on the relevant spot. Otherwise, machine may become damaged through impaired usage.

Grease Fittings

Lubricate with grease at the hourly interval indicated in the arrow. If you operate the machine in extremely wet and/or muddy conditions, lubricate grease fittings more frequently.

2-Point Hitch Pivot

Grease one grease fitting under the 2-point hitch. Apply until grease emerges.

2-Point Hitch to Tongue Pivot

Grease one grease fitting at the tongue pivot. Apply until grease emerges.
Side Depth Wheel Bushing
Grease only the top two grease fittings on each side of each row unit. Apply until grease emerges.

Chain Drive Wing Transfer Driveline
Grease two grease fittings each side. Apply until grease emerges on the joints.

Bearing
Wheel Bearings
Repack two bearings on each wheel.

Marker Disk Hub Bearings
Repack two bearings on each marker.

Storage
Possible Chemical Hazard
Seed disks will have talc and graphite residue, and may have residue of hazardous seed treatments. Do not wash disks where food is prepared or where cookware or dinnerware is washed. Wear gloves when washing disks. Avoid spray.

Component Damage Risk
When cleaning the planter, to avoid damage to IRC components, do not powerwash on or around these electrical components.

Store the planter where children do not play. If possible, store inside for longer life of the planter.

1. Complete all instructions in “Parking” on page 49.
2. Clean-out all material from the planter.
3. Lids:
 - Hopper planters - latch hopper lids.
 - Bulk tank planters - unlatch the tank lids so that the seals are not in compression during storage.
4. Route a chain or security cable through the hold-down U-bolt and the latch handle to prevent unauthorized entry, and prevent high winds from opening the lid.
5. Remove seed disks from seed meters to relieve pressure on the brushes. Clean the disks of residue buildup. See “Seed Disk Maintenance” on page 63.
6. Thoroughly clean seed and seed treatment residue from seed meters. See “Meter Clean-Out” on page 59.
7. Close seed inlet gates at the meters, and tie or tape a small plastic bag over the ends of all seed delivery tubes to prevent pests from entering.
8. For planters with the optional fertilizer package:
 a. The pump, strainer, and manifold system require special attention before storage. See “Fertilizer System” on page 65.
 b. Clean the tanks and application hoses. Be sure to follow the chemical manufacturer's instructions when handling chemicals.
 c. Thoroughly clean the pump following instructions in the pump manual.
 d. Remove any dirt and debris that can hold moisture and cause corrosion.
9. Clean the planter of mud, dirt, excess oil, and grease.
10. Lubricate all points according to “Lubrication” beginning on page 66.
11. Apply grease to exposed cylinder rods to prevent rust.
12. Inspect the planter for worn or damaged parts. Make repairs and service during the off season.
13. Use spray paint to cover scratches, chips, and worn areas on the planter to protect the metal.
14. Cover the planter with a tarp if stored outside.

Inside Disk Scraper Installation

Start with the left-hand row unit and repeat the following steps for each row unit.

1. Insert bolt (1) from the rear, through the lowest hole of the bracket (2).
2. Place the tube (3) over the bolt (1).
3. Place the spacer (4) on the bolt (1) with the larger diameter toward the bolt head.
4. Put the left scraper blade (5) on the spacer (4), followed by the right scraper blade (6).
5. Fasten the scraper assembly with a flat washer (7), lock washer (8), and nut (9).
6. Tight the nut to torque from the “Torque Value Chart” on page 101. Ensure the disks pivot freely.
7. Install the spring (10) by connecting the spring between the disks using the small top holes.
8. Remove one or both opener disks to gain access to the opener frame (11).
9. Install the scraper assembly (12) between the middle four lower square holes (13) of the opener frame.
10. Secure with two bolts (14) and whiz nuts (15).
11. Reinstall the disk.
Troubleshooting

When starting with a new planter, a new crop, or a new population, it is important to physically check what the console is reporting by digging and observing seeds. This is to verify that the planter is set up correctly to plant the desired population. Do not rely only on the population reported by the console.

Plant a short distance and dig the seeds, or run with the closing wheels wired up to leave an open seed trench. Based on seeds found, determine an average distance between seeds. Compare the distance between seeds to the seed spacing listed in the charts for your population.

Also, during start up you may encounter alarms and readouts on the console that do not make sense. It is critical to troubleshoot these alarms, not only to make sure the planter drive is set properly to hit the target population, but also to fix incorrect entries in the console to eliminate nuisance alarms. For console issues, see the console operator manual.

Before going to the troubleshooting charts to remedy a console or population problem, use the following chart. Finding what is wrong comes from knowing what the planter is actually doing in the soil.

Seed Pool Troubleshooting

Foreign Object Risk

After clearing a bridge or blockage, check the seed pool at the meter for any debris that might have caused the bridging. Remove the debris to eliminate the risk of an object lodging in a seed cell and causing skips.

Once planting is underway with the seed pools set, bridging may occur at or above the seed inlet and cause the meter to run empty.

An empty meter causes a Row Failure alarm with a report of the row number. The outside left-hand row is row 1.

To correct the bridging issue:

1. Stop and put the tractor in park. Leave the fan running.
2. Locate the failed row. Remove the rain cover to make sure the meter is empty. Check the gate setting.
3. Temporarily open the gate one or two notches wider.
 a. If the problem was bridging at the gate, seed should flow into the meter immediately.
 b. If little or no seed flows into the meter with the gate open wider, the problem is further up in the seed flow.
 Close the gate completely for about 15 seconds. This prevents meter pressurization air from opposing seed delivery. Gently tap on the seed inlet. Re-open the gate and see if seed now fills the meter.
4. If no obvious foreign object was the cause of the bridging, the gate setting may have been too small for the seed. Make sure that all operating rows were at the correct initial gate setting. If so, reset the gates to the next higher opening.

Troubleshooting Chart

<table>
<thead>
<tr>
<th>Step</th>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is the spacing on the ground correct?</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2.</td>
<td>Is the reported population 1/2 the actual population, or is the reported population too high by a factor of 2?</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3.</td>
<td>Is the population on the console close to the target population?</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>
Bulk Seed Tank Planters

The following illustration shows rear cross sections of the seed meter in normal and row-failed conditions.

<table>
<thead>
<tr>
<th>Normal: Filling</th>
<th>Normal: Filled</th>
<th>Delivery Blockage or Back-flow Starvation</th>
<th>Bridging: Screen</th>
<th>Bridging: Gate</th>
</tr>
</thead>
</table>
| Seed pool at the seed inlet gate prevents back-flow of meter pressurization air, allowing the seed to flow from the delivery system, filling the inlet to the top of the air release screen. | Once the inlet is filled to the top of the air release screen, the air flow from the delivery system is blocked. No further seed arrives until planting reduces the backlog at the inlet. | No seed is arriving from the manifold. Air back-flow (1) is occurring. Causes may include:
- meter never primed by row fill
- low fan speed
- air box or seed hose blockage
- no seed available
- excess meter pressure | Oversize matter in the seed has caused a bridge at the top of the inlet. Air back-flow (1) is occurring. When the bridge is released, the seed pool will be insufficient to prevent back-flow. | A bridge at the gate is blocking flow. Causes may include:
- oversize seed
- gate setting too low
- oversize matter in the seed
- excess meter pressure |

<table>
<thead>
<tr>
<th>Actions</th>
<th>Actions</th>
<th>Actions</th>
<th>Actions</th>
<th>Actions</th>
</tr>
</thead>
</table>
| No action required. Continue planting. | No action required. Continue planting. | 1. Conduct meter fill or row fill. Failure to do this is the most common problem in seed delivery issues.
2. Correct the cause of the blockage.
3. Perform a one-row seed pool recovery.
2. Disconnect the hose at the meter.
3. Tap on the air release screen and inspect.
4. Check the seed pool for foreign matter.
5. Perform a one-row seed pool recovery.
6. Resume planting. | 1. If the seed inlet gate is at the suggested opening, increase one notch.
2. Check the seed pool for foreign matter.
3. Resume planting. |
Row Hopper Planters
The following illustration shows rear cross sections of the seed meter in normal and row-failed conditions.

<table>
<thead>
<tr>
<th>Normal: Filled</th>
<th>Bridging: Inlet Gate</th>
<th>Bridging: Seed Inlet</th>
<th>Empty Hopper</th>
</tr>
</thead>
</table>
| Inlet is filled to hopper. Seeds move down slowly singulated by the meter. | A bridge at the seed inlet gate is blocking flow. Causes may include:
- oversize seed
- gate setting too low
- oversize matter in seed
- excessive or sticky seed treatment
- excess meter pressure | Oversize matter in seed has caused a bridge at the top of the inlet. Causes may include:
- oversize seed
- oversize matter in seed
- excessive or sticky seed treatment | No seed arriving from hopper. Causes may include:
- seed run-out
If hopper is empty, air back-flow (1) is also occurring, which can reduce meter pressurization at other rows. |

<table>
<thead>
<tr>
<th>Actions</th>
<th>Actions</th>
<th>Actions</th>
<th>Actions</th>
</tr>
</thead>
</table>
| No action required. Continue planting. | 1. If gate was at suggested opening, increase one notch.
2. Check seed pool for foreign matter.
2. Tap on hopper junction.
3. Check seed pool for foreign matter.
4. Resume planting. | 1. If row is active, add seed.
2. If row is inactive, close seed inlet gate.
3. Resume planting. |
Seed Pool Recovery
When a seed meter has been starved of seed, the back-flow of air through the open seed inlet gate reduces delivery air flow. This causes seed delivery to be slow. If you start or resume planting with an empty seed pool, the delivery flow may be too low to keep the meter supplied. The steps below quickly prime the meter by rebuilding the seed pool.

1. Close the gate (1). This stops the air back-flow.
2. Clear the bridge (2) or blockage that caused the meter to run empty.
3. Reconnect seed hose(s).
4. With the fan running, listen for seed to fall into the inlet (3).
5. Wait for seed fall (4) to taper off and stop.

6. Open the gate to the operating setting.
7. Start or resume planting.

Seed Population Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall population alarms.</td>
<td>False alarms or actual rate errors due to console setup with incorrect row count or spacing</td>
<td>Review planter configuration and console setup.</td>
</tr>
<tr>
<td>Incorrect cell count</td>
<td></td>
<td>Replace seed disks with correct disks, or reset rate for current disks, if within range.</td>
</tr>
<tr>
<td>Improper gap on speed sensor</td>
<td></td>
<td>Check speed sensor (page 13). An incorrect gap can cause an erratic speed signal causing the console to falsely report an improper planting rate.</td>
</tr>
<tr>
<td>Incorrect speed sensor constant</td>
<td></td>
<td>Perform speed calibration, see the console manual.</td>
</tr>
<tr>
<td>Low population bands or skips just after turns.</td>
<td>Insufficient oil to the fan, meter pressures low, seeds falling from disks</td>
<td>Perform end-of-pass marker and lift operations separately. If already performing separately, lift more gradually.</td>
</tr>
<tr>
<td>Mismatch between reported and furrow population.</td>
<td>Seed tube sensor is not counting all seeds</td>
<td>Clean the seed tube of graphite and dust buildup with seed tube brush. Replace sensors that malfunction.</td>
</tr>
<tr>
<td>Seeds or revolution value in the console setup does not match disk cell count</td>
<td></td>
<td>Correct the value or install correct disk.</td>
</tr>
<tr>
<td>Small seeds, such as milo, are not reliably sensed in the seed tube</td>
<td></td>
<td>Run with rain covers in place to minimize ambient light interference. Use the population adjustment factor in the console system to compensate for missed seeds. For example, change the Population Adjustment values from 100% to 130% as needed. Remember to set this value back to 100% for large seeds.</td>
</tr>
<tr>
<td>Unable to adjust air pressure low enough.</td>
<td>Meter pressure fan speed too high or seed delivery fan speed too high</td>
<td>Adjust baffle at the fan.</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Seed too shallow or scattered on ground from a single row.</td>
<td>Bottom of seed tube damaged</td>
<td>Replace seed tube. Avoid setting the planter straight down. Use forward motion when lowering.</td>
</tr>
<tr>
<td></td>
<td>Row not penetrating in tire tracks</td>
<td>Increase down force on parallel arm springs.</td>
</tr>
<tr>
<td></td>
<td>Opener depth too shallow</td>
<td>Change side depth wheel setting.</td>
</tr>
<tr>
<td>Excessive seed cracking.</td>
<td>Damaged, old, or dried-out seed</td>
<td>Use new seed.</td>
</tr>
<tr>
<td></td>
<td>Incorrect seed cell size</td>
<td>Use correct disk for seed. See Material Rate manual.</td>
</tr>
<tr>
<td></td>
<td>Seed delivery fan speed too high</td>
<td>Reduce the fan speed.</td>
</tr>
<tr>
<td>Excess seed remaining.</td>
<td>Field size different</td>
<td>After ruling out population problems, re-check geography.</td>
</tr>
<tr>
<td></td>
<td>Excessive gaps between planter passes</td>
<td>Adjust marker.</td>
</tr>
<tr>
<td></td>
<td>Incorrect speed calibration</td>
<td>Perform speed calibration, see the console manual.</td>
</tr>
<tr>
<td>Seed consumption too high.</td>
<td>Field size different</td>
<td>After ruling out population problems, re-check geography.</td>
</tr>
<tr>
<td></td>
<td>Excessive overlap, irregular shaped field</td>
<td>Adjust marker.</td>
</tr>
<tr>
<td></td>
<td>Incorrect speed calibration</td>
<td>Perform speed calibration, see the console manual.</td>
</tr>
<tr>
<td>Rows not planted.</td>
<td>Row shut off with IRC or section clutch</td>
<td>Turn on the row.</td>
</tr>
<tr>
<td></td>
<td>If not detected by the console, check for</td>
<td>Lift the planter, expose bottom of seed tube and clean out.</td>
</tr>
<tr>
<td></td>
<td>plugged seed tube</td>
<td></td>
</tr>
<tr>
<td>Uneven seed spacing.</td>
<td>Electric or hydraulic meter drive motor rpm</td>
<td>Increase field speed. Use a seed disk with lower cell count.</td>
</tr>
<tr>
<td></td>
<td>too low for reliable control by proportional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excessive field speed</td>
<td>Reduce field speed.</td>
</tr>
<tr>
<td></td>
<td>Unclean seed</td>
<td>Use clean seed.</td>
</tr>
<tr>
<td></td>
<td>Damaged seed tube</td>
<td>Check seed tubes for damage and replace as needed.</td>
</tr>
<tr>
<td></td>
<td>Row unit disks not turning</td>
<td>See “Row unit disks not turning freely.” on page 79.</td>
</tr>
<tr>
<td></td>
<td>Plugged seed tube</td>
<td>Lift up planter, expose bottom of seed tube and clean out.</td>
</tr>
<tr>
<td></td>
<td>Worn or rusted sprockets and/or chain idler</td>
<td>Check and replace any worn or rusted sprockets or chain idlers.</td>
</tr>
<tr>
<td></td>
<td>or bearings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lack of proper seed lubrication on seed</td>
<td>See “Seed Lubricants” on page 29.</td>
</tr>
</tbody>
</table>
Troubleshooting

PL5700 Planter Table of Contents

Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uneven seed depth.</td>
<td>Excessive field speed</td>
<td>Reduce field speed.</td>
</tr>
<tr>
<td></td>
<td>Planting conditions too wet</td>
<td>Wait until drier weather.</td>
</tr>
<tr>
<td></td>
<td>Damaged seed tube</td>
<td>Check seed tubes for damage and replace as needed.</td>
</tr>
<tr>
<td></td>
<td>Incorrect coulter depth setting</td>
<td>See coulter manual or set unit mounted coulter.</td>
</tr>
<tr>
<td></td>
<td>Excessive or improper row unit down pressure</td>
<td>See “Down-Pressure Adjustment” on page 38.</td>
</tr>
<tr>
<td></td>
<td>Rough planting conditions</td>
<td>Rework the field.</td>
</tr>
<tr>
<td></td>
<td>Seed firmer not in place and set to correct</td>
<td>See “Keeton® Seed Firmer” on page 44.</td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td></td>
</tr>
<tr>
<td>Some large singulated seeds are not accurate.</td>
<td>Incorrect speed calibration, Sensor Constant,</td>
<td>Check and correct speed calibration, Sensor</td>
</tr>
<tr>
<td></td>
<td>or Gear Ratio setup</td>
<td>Constant, and Gear Ratio setup.</td>
</tr>
</tbody>
</table>

Seed Population Too Low

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall low population.</td>
<td>Incorrect seed rate</td>
<td>Check seed rate charts.</td>
</tr>
<tr>
<td></td>
<td>Incorrect ground drive transmission or range</td>
<td>Check transmission sprocket or range sprocket</td>
</tr>
<tr>
<td></td>
<td>sprockets used</td>
<td>tooth counts and driving/driven locations.</td>
</tr>
<tr>
<td></td>
<td>Empty cells in the seed disk due to insufficient</td>
<td>Increase controlled air to meter (page 26).</td>
</tr>
<tr>
<td></td>
<td>pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empty cells in the seed disk due to sticky</td>
<td>Increase seed lubricant. See “Seed Lubricants” on</td>
</tr>
<tr>
<td></td>
<td>seed treatments not allowing seed to rapidly</td>
<td>page 29.</td>
</tr>
<tr>
<td></td>
<td>fill the cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empty cells in the seed disk due to rough</td>
<td>Decrease field speed or increase air pressure in</td>
</tr>
<tr>
<td></td>
<td>field conditions causing seeds to fall from the</td>
<td>the meter.</td>
</tr>
<tr>
<td></td>
<td>disk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empty cells in the seed disk due to seed pool</td>
<td>Open the seed inlet gate one notch.</td>
</tr>
<tr>
<td></td>
<td>too low and seeds not filling every cell in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>seed disk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empty cells in the seed disk due to disk speed</td>
<td>Decrease field speed or change to a higher cell</td>
</tr>
<tr>
<td></td>
<td>too high and cells not filling</td>
<td>count disk.</td>
</tr>
<tr>
<td></td>
<td>Empty cells in the seed disk due to tufted</td>
<td>Check for matted, stuck together fibers on brush.</td>
</tr>
<tr>
<td></td>
<td>brush too aggressive</td>
<td>Wash, scrape, clean, or replace as needed.</td>
</tr>
<tr>
<td></td>
<td>Empty cells in the seed disk due to seed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>too big for the cell</td>
<td>Select correct seed disk for seed size.</td>
</tr>
<tr>
<td></td>
<td>Seeds are not falling from the seed disk and</td>
<td>The graphite component of Ezee Glide Plus</td>
</tr>
<tr>
<td></td>
<td>get carried past drop zone. Static electricity</td>
<td>addresses this issue. Increase the amount of</td>
</tr>
<tr>
<td></td>
<td>can cause small, lightweight seeds to cling to</td>
<td>Ezee Glide Plus and/or more thoroughly mix the</td>
</tr>
<tr>
<td></td>
<td>the cell and not fall out</td>
<td>lubricant into the seed.</td>
</tr>
<tr>
<td></td>
<td>Air pressure too low, as confirmed by gauge</td>
<td>Increase fan speed or reduce baffle setting.</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Overall low population, continued.</td>
<td>Air pressure too low, but gauge reading is within range or reading high</td>
<td>Compare the air pressure reported on the console to the mechanical gauge. If they do not match:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inspect the sample lines from the row units up to the sensor chamber for leaks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Re-zero the air pressure with the fan off.</td>
</tr>
<tr>
<td></td>
<td>Bulk tank planters - not enough air for seed delivery</td>
<td>Increase seed delivery fan speed.</td>
</tr>
<tr>
<td></td>
<td>Inadequate contact wheel spring pressure</td>
<td>Check for correct spring and gap setting (page 34).</td>
</tr>
<tr>
<td></td>
<td>Tire pressure in contact wheel incorrect</td>
<td>Check for correct tire air pressure. See "Tire Information" on page 101.</td>
</tr>
<tr>
<td></td>
<td>Excess field speed</td>
<td>Plant within speed ranges from seed rate charts. See Material Rate manual.</td>
</tr>
<tr>
<td></td>
<td>Improper gap on speed sensor</td>
<td>Check speed sensor on planter (page 13). Adjust as needed.</td>
</tr>
<tr>
<td></td>
<td>Incorrect speed sensor constant</td>
<td>Perform speed calibration, see the console manual.</td>
</tr>
<tr>
<td>Low population, one wing.</td>
<td>Skipping chain from the drive to the wing</td>
<td>Check chain slack. Replace worn chain.</td>
</tr>
<tr>
<td></td>
<td>Incorrectly adjusted drive dog on split shafts is slipping</td>
<td>Adjust drive dog on shaft.</td>
</tr>
<tr>
<td>Low population, single row.</td>
<td>Seed inlet gate opening too wide, interfering with meter pressurization</td>
<td>Adjust the gate to lower setting.</td>
</tr>
<tr>
<td></td>
<td>Seed inlet gate opening too narrow, starving the meter of seed (low seed pool)</td>
<td>Adjust the gate to higher setting.</td>
</tr>
<tr>
<td></td>
<td>Meter starvation due to bridging at the gate</td>
<td>Readjust for gate bridging (page 73). If seed is treated, increase seed lubricant. See "Seed Lubricants" on page 29.</td>
</tr>
<tr>
<td></td>
<td>Skips due to low meter pressurization at one or several rows</td>
<td>Check gate setting. Check for excess wear on the seed drop brush. Check for loose or leaking pressure hose.</td>
</tr>
<tr>
<td></td>
<td>Incorrect seed disk on one row</td>
<td>Install correct seed disk. See Material Rate manual for seed charts.</td>
</tr>
<tr>
<td></td>
<td>Chain skipping at one row</td>
<td>Check for worn chain, worn idlers, and low chain slack.</td>
</tr>
<tr>
<td></td>
<td>Skips due to debris in disk cells</td>
<td>Remove rain covers, inspect, and clean out disks.</td>
</tr>
<tr>
<td></td>
<td>Seed sensor not able to count all seeds</td>
<td>Clean out seed tube.</td>
</tr>
<tr>
<td></td>
<td>Seed tube plugged</td>
<td>Raise planter, expose bottom of seed tube and clean out.</td>
</tr>
<tr>
<td>Low or erratic seed flow.</td>
<td>Seed meter plugged due to operating with fan shut off or pressure too low</td>
<td>Close seed inlet gates. Clean out meters. Set fan for correct pressure. Resume planting.</td>
</tr>
</tbody>
</table>
Seed Population Too High

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall high population.</td>
<td>Incorrect seed rate</td>
<td>Check seed rate charts.</td>
</tr>
<tr>
<td></td>
<td>Incorrect ground drive transmission or range sprockets used</td>
<td>Check transmission sprocket or range sprocket selections and driving/driven locations.</td>
</tr>
<tr>
<td></td>
<td>Two seeds per cell in the seed disk due to excess meter pressurization</td>
<td>Decrease the controlled air to the meter. See “Fan Adjustment” on page 26.</td>
</tr>
<tr>
<td></td>
<td>Two seeds per cell in the seed disk due to cells too large for the seed</td>
<td>Select a disk with smaller cells.</td>
</tr>
<tr>
<td></td>
<td>Air meter pressure too high due to pressure sensor not zeroed properly</td>
<td>Re-zero air pressure with fan off. Make sure displayed pressure reads 0.00.</td>
</tr>
</tbody>
</table>
| | Air pressure too high, but gauge is within range or reading low | Compare the air pressure reported on the console to the mechanical gauge. If they do not match:
 - Inspect sample lines from row units up to sensor chamber for leaks.
 - Re-zero air pressure with fan off. |
| | False alarms or actual seed rate errors due to console setup with incorrect row count, spacing, or active rows | Review planter configuration and console setup. |
| | Incorrect disk cell count | Replace seed disks with correct disks, or reset rate for current disks, if within range. |
| | Improper gap on speed sensor | Check speed sensor (page 13). An improper gap can cause erratic speed signal causing the console to falsely report an improper planting rate. |
| | Incorrect speed sensor constant | Perform speed calibration, see the console manual. |
| | Doubles due to incorrect disk for crop or seed size | Use the recommended disk for crop and seed size. See Material Rate manual for seed charts. |
| | Sticky seeds from excess seed treatment | Increase seed lubricant. See “Seed Lubricants” on page 29. |
| High population, single row. | Excess meter pressurization causing doubles | Check seed inlet gate. See “Seed Inlet Gate Adjustment” on page 31. |
| | Worn tufted brush allowing doubles | Replace worn brush. |
| | Worn seed-drop brush and/or strip brushes allowing excess seed to pass | Replace worn brushes. |
| | Incorrect seed disk with higher cell count | Install correct disk. See Material Rate manual for seed charts. |
Seed Delivery Problems - Bulk Seed

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single row does not fill or keep up with other rows.</td>
<td>Drop tube to meter is too long causing seed to pool and plug hose</td>
<td>Shorten hose with planter raised, but row units lowered, to make sure hose is not too short.</td>
</tr>
<tr>
<td></td>
<td>Debris in seed at air box or in seed hose</td>
<td>Check for debris and clean as needed.</td>
</tr>
<tr>
<td>Multiple rows fail for lack of seed.</td>
<td>Fan speed too high or too low</td>
<td>Check and adjust fan speed. See “Fan Adjustment” on page 26.</td>
</tr>
<tr>
<td></td>
<td>Out of seed</td>
<td>Add seed.</td>
</tr>
<tr>
<td>Single or multiple hoses plugging just ahead of air box.</td>
<td>Fan speed too high or too low</td>
<td>Check and adjust fan speed. See “Fan Adjustment” on page 26.</td>
</tr>
<tr>
<td></td>
<td>Possible air leak</td>
<td>Check for air leak downstream between the air box and top of meter.</td>
</tr>
<tr>
<td>Did not perform Fill Disk</td>
<td>Foreign matter in seed chamber in bottom of air box</td>
<td>Clean out seed chamber.</td>
</tr>
<tr>
<td>Little or no seed to several rows with heavily treated seed.</td>
<td>Seed treatment sticky</td>
<td>Add Ezee Glide Plus to seed to dry out seed treatment. See “Seed Lubricants” on page 29.</td>
</tr>
<tr>
<td></td>
<td>Treatment mixed unevenly and plugging outlets</td>
<td>Clean out seed and re-mix.</td>
</tr>
</tbody>
</table>

Planter Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planter does not fold or unfold fully.</td>
<td>Air in lines</td>
<td>Rephase hydraulic cylinder. See “Lift and Fold Hydraulics” on page 16.</td>
</tr>
<tr>
<td>Press wheel or row units plugging.</td>
<td>Planting conditions too wet</td>
<td>Wait until drier weather.</td>
</tr>
<tr>
<td></td>
<td>Too much pressure on row units</td>
<td>Reduce down pressure on row units. See “Down-Pressure Adjustment” on page 38.</td>
</tr>
<tr>
<td></td>
<td>Coulters set too deep, bringing up excess dirt and moisture</td>
<td>Check coulter adjustment.</td>
</tr>
<tr>
<td></td>
<td>Planter not set to run level from front to rear</td>
<td>Check tongue height. See “Planter Leveling” on page 13.</td>
</tr>
<tr>
<td></td>
<td>Backed up with planter in the ground</td>
<td>Clean out and check for damage.</td>
</tr>
<tr>
<td></td>
<td>Failed disk bearings</td>
<td>Replace disk bearings.</td>
</tr>
<tr>
<td></td>
<td>Disks are worn</td>
<td>Replace disks.</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Press wheel or row units plugging, continued.</td>
<td>Scraper worn or damaged. Side depth wheels not set correctly</td>
<td>Adjust side depth wheels. See “Side Depth Wheel Adjustments” on page 40.</td>
</tr>
<tr>
<td>Row unit disks not turning freely.</td>
<td>Row unit plugged with dirt</td>
<td>Clean row unit.</td>
</tr>
<tr>
<td></td>
<td>Planting conditions too wet</td>
<td>Wait until drier weather.</td>
</tr>
<tr>
<td></td>
<td>Incorrect side depth wheel adjustment</td>
<td>Adjust side depth wheel. See “Disk Contact Adjustment” on page 39.</td>
</tr>
<tr>
<td></td>
<td>Failed disk bearings</td>
<td>Replace disk bearings.</td>
</tr>
<tr>
<td></td>
<td>Bent or twisted row unit frame</td>
<td>Replace row unit frame.</td>
</tr>
<tr>
<td></td>
<td>Partially plugged seed tube</td>
<td>Lift up planter, expose bottom of seed tube and clean out.</td>
</tr>
<tr>
<td>Press wheels not compacting soil as desired.</td>
<td>Incorrect spring handle setting</td>
<td>Correct spring handle setting. See “Press Wheel Adjustments” on page 41.</td>
</tr>
<tr>
<td></td>
<td>Insufficient row unit down-force</td>
<td>Adjust row unit down-force. See “Down-Pressure Adjustment” on page 38.</td>
</tr>
<tr>
<td></td>
<td>Use of incorrectly shaped tire for conditions</td>
<td>Wedge shaped wheels work best on narrow spacings and in wet conditions. Round edge wheels work best in wider row spacings and drier conditions.</td>
</tr>
<tr>
<td></td>
<td>Planter not level front to rear</td>
<td>Check tongue height. See “Planter Leveling” on page 13.</td>
</tr>
<tr>
<td>Marker functioning improperly, or not at all.</td>
<td>Marker switch not set correctly</td>
<td>Left or right not selected. Set tractor remote circuit to neutral or float before operating switch.</td>
</tr>
<tr>
<td></td>
<td>Markers not raised or lowered fully to cycle sequencing valve</td>
<td>Fully raise and lower markers.</td>
</tr>
<tr>
<td></td>
<td>Console not set to Field operation</td>
<td>Set console to Field operation.</td>
</tr>
<tr>
<td></td>
<td>Air or oil leaks in hose fittings or connections</td>
<td>Check all hose fittings and connections for air or oil leaks.</td>
</tr>
<tr>
<td></td>
<td>Low tractor hydraulic oil level</td>
<td>Check tractor hydraulic oil level.</td>
</tr>
<tr>
<td></td>
<td>Loose or missing bolts or fasteners</td>
<td>Check all bolts and fasteners.</td>
</tr>
<tr>
<td>Marker disk does not mark.</td>
<td>Marker folding linkage does not have enough slack to allow marker disk to drop into field depressions</td>
<td>Maximum down float should be limited by slot at rod end of marker cylinder.</td>
</tr>
<tr>
<td></td>
<td>Disk angle too straight for soil conditions</td>
<td>Reverse marker disk to pull or throw dirt.</td>
</tr>
</tbody>
</table>
Fertilizer Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fertilizer flow</td>
<td>Hydraulic driven pump (option) not engaged</td>
<td>Engage pump.</td>
</tr>
<tr>
<td></td>
<td>Various possible pump issues</td>
<td>Refer to pump manual.</td>
</tr>
<tr>
<td></td>
<td>Tank and/or pump valves closed</td>
<td>Check that tank and pump valves are open (page 45)</td>
</tr>
<tr>
<td></td>
<td>Chain missing at one or more drive stages</td>
<td>Check all chains from ground drive to pump (page 47).</td>
</tr>
<tr>
<td></td>
<td>Tank plugged</td>
<td>Dilute or clean out any material clogging discharge port (page 65).</td>
</tr>
<tr>
<td></td>
<td>Strainer plugged</td>
<td>Close all valves. Inspect strainer. Clean screen as needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch to a larger screen size if materials clog strainer rapidly and large size orifices are in use.</td>
</tr>
<tr>
<td></td>
<td>Pump setting at or near zero</td>
<td>Recommended pump adjuster settings are in the range 2 to 10. See Material Rate manual.</td>
</tr>
<tr>
<td></td>
<td>Material run-out</td>
<td>Check tank level.</td>
</tr>
<tr>
<td></td>
<td>Material low - loss of prime</td>
<td>Add material. When tank level is below pump inlet level, any air allowed in the line can cause the pump to lose prime.</td>
</tr>
<tr>
<td>Low rate</td>
<td>Fertilizer transmission in low range when high range was intended</td>
<td>Change sprockets. See Material Rate manual.</td>
</tr>
<tr>
<td></td>
<td>Various possible pump issues</td>
<td>Refer to pump manuals.</td>
</tr>
<tr>
<td>Low pressure at desired rate</td>
<td>Orifice size too large</td>
<td>Choose alternate orifice plate size. See Material Rate manual.</td>
</tr>
<tr>
<td></td>
<td>Orifices correct plate size, but holes are enlarged from use</td>
<td>Replace orifice plates. Discard worn plates.</td>
</tr>
<tr>
<td></td>
<td>Rate may actually be low</td>
<td>Check fertilizer drive sprockets.</td>
</tr>
<tr>
<td>Uneven flow at desired rate</td>
<td>One or more orifice plates plugged</td>
<td>Clean and reinstall orifice plates. Check that material is correct consistency for orifice size.</td>
</tr>
<tr>
<td></td>
<td>Orifice plate sizes vary between rows</td>
<td>Check that all nozzles have the same size plates.</td>
</tr>
<tr>
<td>Pressure unstable</td>
<td>Strainer clogged</td>
<td>Close all valves. Inspect strainer. Clean screen as needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch to a larger screen size if materials clog strainer rapidly and large size orifices are in use. See “Liquid Fertilizer (Option)” on page 45.</td>
</tr>
<tr>
<td>Dumping at normal pressure</td>
<td>Relief valve setting too low</td>
<td>Review relief valve setting. See Material Rate manual.</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>High pressure at desired rate</td>
<td>Orifice size too small</td>
<td>Review orifice sizing. If at recommended size, try the next large size. Charts are based on typical density/viscosity materials.</td>
</tr>
<tr>
<td></td>
<td>Nozzles are plugged. Sedimentation, coagulation, particulates, and foreign matter can also cause unusually high pressure</td>
<td>Inspect low-flow rows or several nozzles. Clean plates. Consider smaller strainer screen size and/or large orifice plate size.</td>
</tr>
<tr>
<td></td>
<td>Orifice plates upside down</td>
<td>Position plates with words facing outlet. Orifice port holes are not symmetrical, and at smaller sizes this can cause slightly higher back-pressure with denser materials.</td>
</tr>
<tr>
<td>Very high flow</td>
<td>Fertilizer transmission in high range instead of low range</td>
<td>Change sprockets. See Material Rate manual.</td>
</tr>
<tr>
<td></td>
<td>Possible pump issues</td>
<td>See pump manual.</td>
</tr>
<tr>
<td>Pump leaks</td>
<td>Possible pump issues</td>
<td>See pump manual.</td>
</tr>
<tr>
<td>Pump oil consumption</td>
<td>Pump seals or o-ring</td>
<td>See pump manual.</td>
</tr>
<tr>
<td>Noisy pump</td>
<td>Crankcase components worn</td>
<td>See pump manual.</td>
</tr>
</tbody>
</table>
Specifications

<table>
<thead>
<tr>
<th>1230 Models</th>
<th>PL5700-CH-1230</th>
<th>PL5700-IH-1230</th>
<th>PL5700-CB-1230</th>
<th>PL5700-IB-1230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row count</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Row spacing</td>
<td></td>
<td></td>
<td>30 inch (76.2 cm)</td>
<td></td>
</tr>
<tr>
<td>Minimum tractor requirement</td>
<td></td>
<td></td>
<td>140 hp (104 kw)</td>
<td></td>
</tr>
<tr>
<td>Hitch</td>
<td></td>
<td></td>
<td>Standard 2-point hitch, optional hydraulic hitch</td>
<td></td>
</tr>
<tr>
<td>Hydraulic circuit</td>
<td></td>
<td></td>
<td>Closed-center, 3 remotes (4 with hydraulic drive option), 2250 psi (155 bar), 25 gal/min (98 liters/min) fan circuit</td>
<td></td>
</tr>
<tr>
<td>Tire size</td>
<td>PL5700-CH-1230</td>
<td>PL5700-IH-1230</td>
<td>PL5700-CB-1230</td>
<td>PL5700-IB-1230</td>
</tr>
<tr>
<td></td>
<td>VF295/75R22.5 AD2</td>
<td>VF295/75R22.5 AD2</td>
<td>VF295/75R22.5 AD2</td>
<td>VF295/75R22.5 AD2</td>
</tr>
<tr>
<td>Working width</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working height</td>
<td></td>
<td></td>
<td>8 ft 3 in (2.5 m)</td>
<td>9 ft 2 in (2.8 m)</td>
</tr>
<tr>
<td>Transport width</td>
<td>1.6 bu (56 liters) hopper - 11 ft 6 in (3.5 m)</td>
<td>3.0 bu (105 liters) hopper - 13 ft (4 m)</td>
<td>11 ft 11 in (3.6 m)</td>
<td></td>
</tr>
<tr>
<td>Transport length</td>
<td></td>
<td></td>
<td>29 ft 9 in (9 m)</td>
<td></td>
</tr>
<tr>
<td>Transport height, base</td>
<td>8 ft (2.4 m)</td>
<td></td>
<td></td>
<td>11 ft 5 in (3.5 m)</td>
</tr>
<tr>
<td>Transport height, w/ markers</td>
<td>10 ft 6 in (3.2 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport clearance</td>
<td></td>
<td></td>
<td>19.6 in (50 cm)</td>
<td></td>
</tr>
<tr>
<td>Field length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, base</td>
<td>10 770 lb (4890 kg)</td>
<td>10 220 lb (4640 kg)</td>
<td>12 150 lb (5510 kg)</td>
<td>11 610 lb (5260 kg)</td>
</tr>
<tr>
<td>Weight, empty minimum</td>
<td>11 860 lb (5380 kg)</td>
<td>11 310 lb (5130 kg)</td>
<td>13 230 lb (6000 kg)</td>
<td>12 690 lb (5760 kg)</td>
</tr>
<tr>
<td>Weight, full minimum</td>
<td>17 860 lb (8100 kg)</td>
<td>17 310 lb (7850 kg)</td>
<td>19 230 lb (8720 kg)</td>
<td>18 690 lb (8480 kg)</td>
</tr>
<tr>
<td>Weight, empty maximum</td>
<td>14 510 lb (6580 kg)</td>
<td>13 860 lb (6290 kg)</td>
<td>15 360 lb (6970 kg)</td>
<td>14 720 lb (6680 kg)</td>
</tr>
<tr>
<td>Weight, full maximum</td>
<td>23 990 lb (10 880 kg)</td>
<td>23 340 lb (10 590 kg)</td>
<td>24 840 lb (11 270 kg)</td>
<td>24 200 lb (10 980 kg)</td>
</tr>
<tr>
<td>Seed capacity</td>
<td>Per row - 3 bu (105 liter) hopper Total - 36 bu (1260 liter)</td>
<td>Per row - 1.6 bu (56 liter) hopper Total - 19.2 bu (672 liter)</td>
<td>Per seed tank - 50 bu (1760 liter) Total - 100 bu (3520 liter)</td>
<td></td>
</tr>
<tr>
<td>Fertilizer capacity</td>
<td>600 gal (2271 liter)</td>
<td></td>
<td>400 gal (1514 liter)</td>
<td></td>
</tr>
<tr>
<td>Opener Down Pressure</td>
<td>320 to 535 lbs (145 to 243 kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opener Travel (Up - Down)</td>
<td>10 in (25.4 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opener Depth Range</td>
<td>0 to 3.5 in (0 to 9 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- a. Base configuration is hoppers (1.6 bu) or bulk tank, without markers, fertilizer, coulters, and row cleaners.
- b. Minimum configuration is hoppers (1.6 bu) or bulk tank, with markers, and without fertilizer, coulters, and row cleaners.
- c. Full minimum configuration with 60 lb/bu (0.77 kg/liter) seed.
- d. Maximum configuration is hoppers (3.0 bu) or bulk tank, markers, fertilizer, and unit mount row cleaners.
- e. Full maximum configuration with 60 lb/bu (0.77 kg/liter) seed and 1.04 kg/liter (8.7 lb/gal) fertilizer.
<table>
<thead>
<tr>
<th>1630 Models</th>
<th>PL5700-CH-1630</th>
<th>PL5700-IH-1630</th>
<th>PL5700-CB-1630</th>
<th>PL5700-IB-1630</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row count</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row spacing</td>
<td>30 inch (76.2 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum tractor requirement</td>
<td>190 hp (142 kw)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hitch</td>
<td>Standard 2-point hitch, optional hydraulic hitch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic circuit</td>
<td>Closed-center, 3 remotes (4 with hydraulic drive option), 2250 psi (155 bar), 25 gal/min (98 liters/min) fan circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire size</td>
<td>VF295/75R22.5 AD2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working width</td>
<td>40 ft (12.2 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working length</td>
<td>23 ft 10 in (7.3 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working height</td>
<td>8 ft 3 in (2.5 m)</td>
<td>9 ft 2 in (2.8 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport width</td>
<td>1.6 bu (56 liters) hopper - 11 ft 6 in (3.5m)</td>
<td>3.0 bu (105 liters) hopper - 13 ft (4 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport length</td>
<td>34 ft 4 in (10.5 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport height, base<sup>a</sup></td>
<td>8 ft (2.4 m)</td>
<td>11 ft 5 in (3.5 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport height, w/ markers</td>
<td>3.2 m (10 ft 6 in)</td>
<td>11 ft 5 in (3.5 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport clearance</td>
<td>19.6 in (50 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field length</td>
<td>23 ft 10 in (7.3 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, base<sup>a</sup></td>
<td>16300 lb (7390 kg)</td>
<td>15 630 lb (7090 kg)</td>
<td>17 190 lb (7800 kg)</td>
<td>16 670 lb (7560 kg)</td>
</tr>
<tr>
<td>Weight, empty minimum<sup>b</sup></td>
<td>17 760 lb (8060 kg)</td>
<td>17 090 lb (7750 kg)</td>
<td>18 660 lb (8460 kg)</td>
<td>18 130 lb (8220 kg)</td>
</tr>
<tr>
<td>Weight, full minimum<sup>c</sup></td>
<td>23 760 lb (10 780 kg)</td>
<td>23 090 lb (10 740 kg)</td>
<td>24 660 lb (11 180 kg)</td>
<td>24 130 lb (10 950 kg)</td>
</tr>
<tr>
<td>Weight, empty maximum<sup>d</sup></td>
<td>20 660 lb (9370 kg)</td>
<td>19 810 lb (8980 kg)</td>
<td>20 906 lb (9510 kg)</td>
<td>20 340 lb (9230 kg)</td>
</tr>
<tr>
<td>Weight, full maximum<sup>e</sup></td>
<td>30 140 lb (13 670 kg)</td>
<td>29 290 lb (13 280 kg)</td>
<td>30 440 lb (13 810 kg)</td>
<td>29 820 lb (13 530 kg)</td>
</tr>
<tr>
<td>Seed capacity</td>
<td>Per row - 3 bu (105 liters) hopper</td>
<td>Total - 48 bu (1692 liters)</td>
<td>Per row - 1.6 bu (56 liters) hopper</td>
<td>Total - 25.6 bu (902 liters)</td>
</tr>
<tr>
<td>Fertilizer capacity</td>
<td>600 gal (2271 liters)</td>
<td></td>
<td>400 gal (1514 liters)</td>
<td></td>
</tr>
<tr>
<td>Opener Down Pressure</td>
<td>600 gal (2271 liters)</td>
<td></td>
<td>400 gal (1514 liters)</td>
<td></td>
</tr>
<tr>
<td>Opener Travel (Up - Down)</td>
<td>320 to 535 lbs (145 to 243 kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opener Depth Range</td>
<td>0 to 3.5 in (0 to 9 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Base configuration is hoppers (1.6 bu) or bulk tank, without markers, fertilizer, coulters, and row cleaners.

^b Minimum configuration is hoppers (1.6 bu) or bulk tank, with markers, and without fertilizer, coulters, and row cleaners.

^c Full minimum configuration with 60 lb/bu (0.77 kg/liter) seed.

^d Maximum configuration is hoppers (3.0 bu) or bulk tank, with markers, fertilizer, coulters, and unit mount row cleaners.

^e Full maximum configuration with hoppers (3.0 bu) or bulk tank, with markers, fertilizer, coulters, and unit mount row cleaners.
1270 Models

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Row count</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row spacing</td>
<td>70 cm (27.6 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum tractor requirement</td>
<td>104 kw (140 hp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hitch</td>
<td>Standard 2-point hitch, optional hydraulic hitch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic circuit</td>
<td>Closed-center, 3 remotes, 155 bar (2250 psi), 98 liters/min (25 gal/min) fan circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire size</td>
<td>VF295/75R22.5 AD2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working width</td>
<td>8.5 m (28.0 ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working length</td>
<td>6.0 m (19 ft 9 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working height, w/markers</td>
<td>2.5 m (8 ft 3 in)</td>
<td>2.8 m (9 ft 2 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport width</td>
<td>56 liters (1.6 bu) hopper - 3.5 m (11 ft 6 in) 105 liters (3.0 bu hopper) - 4.0 m (13 ft)</td>
<td>11 ft 11 in (3.6 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport length</td>
<td>9 m (29 ft 9 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport height, base<sup>a</sup></td>
<td>2.4 m (8.0 ft)</td>
<td>3.5 m (11 ft 5 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport clearance</td>
<td>50 cm (19.6 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, base<sup>a</sup></td>
<td>5110 kg (11266 lb)</td>
<td>4500 kg (9921 lb)</td>
<td>5730 kg (12633 lb)</td>
<td>5120 kg (11288 lb)</td>
</tr>
<tr>
<td>Weight, empty minimum<sup>b</sup></td>
<td>5520 kg (12170 lb)</td>
<td>4910 kg (10825 lb)</td>
<td>6140 kg (13536 lb)</td>
<td>5540 kg (12214 lb)</td>
</tr>
<tr>
<td>Weight, full minimum<sup>c</sup></td>
<td>8240 kg (18166 lb)</td>
<td>7630 kg (16821 lb)</td>
<td>8860 kg (19533 lb)</td>
<td>8360 kg (18431 lb)</td>
</tr>
<tr>
<td>Weight, empty maximum<sup>d</sup></td>
<td>6940 kg (15300 lb)</td>
<td>6290 kg (13860 lb)</td>
<td>7330 kg (16160 lb)</td>
<td>6680 kg (14727 lb)</td>
</tr>
<tr>
<td>Weight, full maximum<sup>e</sup></td>
<td>11240 kg (24780 lb)</td>
<td>10590 kg (23347 lb)</td>
<td>11630 kg (25640 lb)</td>
<td>10980 kg (24207 lb)</td>
</tr>
<tr>
<td>Seed capacity</td>
<td>Per row - 105 liters (3.0 bu hopper) hopper Total - 1260 liters (36.0 bu) Per row - 56 liters (1.6 bu hopper) hopper Total - 677 liters (19.2 bu)</td>
<td>Per seed tank - 1760 liters (50.0 bu) Total - 3520 liters (100.0 bu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizer capacity</td>
<td>2271 liters (600 gal)</td>
<td>1514 liters (400 gal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opener Down Pressure</td>
<td>145 to 243 kg (320 to 535 lbs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opener Travel (Up - Down)</td>
<td>25.4 cm (10 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opener Depth Range</td>
<td>0 to 9 cm (0 to 3.5 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Base configuration is hoppers 56 liters (1.6 bu) or bulk tank, without markers, fertilizer, coulters, and row cleaners.

^b Minimum configuration is hoppers 56 liters (1.6 bu) or bulk tank, with markers, and without fertilizer, coulters, and row cleaners.

^c Full minimum configuration with 0.77 kg/liter (60 lb/bu) seed.

^d Maximum configuration is hoppers 105 liters (3.0 bu) or bulk tank, with markers, fertilizer, and unit mount row cleaners.

^e Full maximum configuration with 0.77 kg/liter (60 lb/bu) seed and 1.04 kg/liter (8.7 lb/gal) fertilizer.
<table>
<thead>
<tr>
<th>Specifications</th>
<th>PL5700-CH-1670</th>
<th>PL5700-IH-1670</th>
<th>PL5700-CB-1670</th>
<th>PL5700-IB-1670</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row spacing</td>
<td>70 cm (27.6 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum tractor requirement</td>
<td>142 kw (190 hp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hitch</td>
<td>Standard 2-point hitch, optional hydraulic hitch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic circuit</td>
<td>Closed-center, 3 remotes, 155 bar (2250 psi), 98 liters/min (25 gal/min) fan circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire size</td>
<td>VF295/75R22.5 AD2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working width</td>
<td>11.25 m (36 ft 11 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working length</td>
<td>7.3 m (23 ft 10 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working height</td>
<td>2.5 m (8 ft 3 in)</td>
<td>2.8 m (9 ft 2 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport width</td>
<td>56 liters (1.6 bu) hopper - 3.5 m (11 ft 6 in) 105 liters (3.0 bu hopper) - 4.0 m (13 ft)</td>
<td>11 ft 11 in (3.6 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport length</td>
<td>10.5 m (34 ft 4 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport height, base</td>
<td>2.4 m (8 ft)</td>
<td>3.5 m (10 ft 5 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport clearance</td>
<td>50 cm (19.6 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, base</td>
<td>7630 kg (16820 lb)</td>
<td>6970 kg (15370 lb)</td>
<td>8040 kg (17730 lb)</td>
<td>7440 kg (16400 lb)</td>
</tr>
<tr>
<td>Weight, empty minimum</td>
<td>8220 kg (18120 lb)</td>
<td>7550 kg (16650 lb)</td>
<td>8620 kg (19000 lb)</td>
<td>8020 kg (17680 lb)</td>
</tr>
<tr>
<td>Weight, full minimum</td>
<td>10940 kg (24120 lb)</td>
<td>10270 kg (22640 lb)</td>
<td>11340 kg (25000 lb)</td>
<td>10750 kg (23700 lb)</td>
</tr>
<tr>
<td>Weight, empty maximum</td>
<td>9750 kg (21500 lb)</td>
<td>9000 kg (19840 lb)</td>
<td>9890 kg (21800 lb)</td>
<td>9250 kg (20400 lb)</td>
</tr>
<tr>
<td>Weight, full maximum</td>
<td>14050 kg (30980 lb)</td>
<td>13000 kg (29320 lb)</td>
<td>14190 kg (31280 lb)</td>
<td>13550 kg (29870 lb)</td>
</tr>
<tr>
<td>Seed capacity</td>
<td>Per row - 105 liters (3.0 bu hopper) hopper Total - 1260 liters (36.0 bu) Per row - 56 liters (1.6 bu hopper) hopper Total - 677 liters (19.2 bu)</td>
<td>Per seed tank - 1760 liters (50.0 bu) Total - 3520 liters (100.0 bu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizer capacity</td>
<td>2271 liters (600 gal)</td>
<td>1514 liters (400 gal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opener Down Pressure</td>
<td>145 to 243 kg (320 to 535 lbs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opener Travel (Up - Down)</td>
<td>25.4 cm (10 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opener Depth Range</td>
<td>0 to 9 cm (0 to 3.5 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Base configuration is hoppers (1.6 bu) or bulk tank, without markers, fertilizer, coulters, and row cleaners.
b. Minimum configuration is hoppers (1.6 bu) or bulk tank, with markers, and without fertilizer, coulters, and row cleaners.
c. Full minimum configuration with 0.77 kg/liter (60 lb/bu) seed.
d. Maximum configuration is hoppers 105 liters (3.0 bu) or bulk tank, with markers, fertilizer, coulters, and unit mount row cleaners.
e. Full maximum configuration with 0.77 kg/liter (60 lb/bu) seed and 1.04 kg/liter (8.7 lb/gal) fertilizer.
Transport Dimensions

Hopper Planters

<table>
<thead>
<tr>
<th>Callout</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Transport Length</td>
<td>29 ft 9 in (9m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34 ft 4 in (10.5 m)</td>
</tr>
<tr>
<td>B</td>
<td>Transport Height, Markers</td>
<td>10 ft 6 in (3.2 m)</td>
</tr>
<tr>
<td>C</td>
<td>Transport Height, Hoppers</td>
<td>8 ft (2.4 m)</td>
</tr>
<tr>
<td>D</td>
<td>Transport Clearance</td>
<td>19.6 in (50 cm)</td>
</tr>
</tbody>
</table>
Bulk Planters

The images illustrate the specifications for 12-row and 16-row Bulk Planters with 30 in and 70 cm row spacing. The measurements are as follows:

<table>
<thead>
<tr>
<th>Callout</th>
<th>Description</th>
<th>12-Row</th>
<th>16-Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Transport Length</td>
<td>29 ft 9 in (9m)</td>
<td>34 ft 4 in (10.5 m)</td>
</tr>
<tr>
<td>B</td>
<td>Transport Height, Bulk Tank</td>
<td>11 ft 5 in (3.5 m)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Transport Clearance</td>
<td>19.6 in (50 cm)</td>
<td></td>
</tr>
</tbody>
</table>

The diagrams show the 12-row planter on the top and the 16-row planter on the bottom, highlighting the transport length, transport height, and transport clearance.
12-Row and 16-Row (30 in and 70 cm row spacing)

<table>
<thead>
<tr>
<th>Callout</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Transport Width</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6 bushel hoppers</td>
<td>11 ft 11 in (3.6 m)</td>
</tr>
<tr>
<td></td>
<td>3.0 bushel hoppers</td>
<td>13 ft (4 m)</td>
</tr>
<tr>
<td></td>
<td>Bulk tank</td>
<td>11 ft 11 in (3.6 m)</td>
</tr>
</tbody>
</table>
Field/Working Dimensions
12-Row Planters

Callout	Description	Dimension
A | Length | 20 ft 1 in (6.1m) |
B | Height, Markers Folded | 10 ft 6 in (3.2 m) |
C | Height, Hoppers | 8 ft 3 in (2.5 m) |
D | Height, Bulk Tank | 9 ft 2 in (2.8 m) |
Specifications

Callout	**Description**	**Dimension**
A | Width, Markers Folded | 31 ft 4 in (9.5 m)

Callout	**Description**	**Dimension**
A | Width, Markers Folded | 8.9 m (29 ft 4 in)

With Hoppers or Bulk Tank (30 in row spacing)

With Hoppers or Bulk Tank (70 cm row spacing)
16-Row Planters

with Hoppers (30 in and 70 cm row spacing)

with Bulk Tank (30 in and 70 cm row spacing)

<table>
<thead>
<tr>
<th>Callout</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Length</td>
<td>23 ft 10 in (7.3 m)</td>
</tr>
<tr>
<td>B</td>
<td>Height, Markers Folded</td>
<td>8 ft 4 in (2.5 m)</td>
</tr>
<tr>
<td>C</td>
<td>Height, Hoppers</td>
<td>5 ft 10 in (1.6 m)</td>
</tr>
<tr>
<td>D</td>
<td>Height, Bulk Tank</td>
<td>9 ft 2 in (3.0 m)</td>
</tr>
<tr>
<td>Callout</td>
<td>Description</td>
<td>Dimension</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>A</td>
<td>Width, Markers Folded</td>
<td>41 ft 2 in (12.5 m)</td>
</tr>
</tbody>
</table>

with Hoppers or Bulk Tank (30 in row spacing)

<table>
<thead>
<tr>
<th>Callout</th>
<th>Description</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Width, Markers Folded</td>
<td>11 ft 6 m (38 ft 1 in)</td>
</tr>
</tbody>
</table>

with Hoppers or Bulk Tank (70 cm row spacing)
Hydraulic Diagrams
Lift Hydraulics - 12 Row Planters

(1) Wing wheel - Slave 3 cylinder
(2) Transport wheel - Slave 1 cylinder
(3) Transport wheel - Master 3 cylinder
(4) Transport wheel - Master 2 cylinder
(5) Transport wheel - Master 1 cylinder
(6) Wing wheel - Slave 2 cylinder
Lift Hydraulics - 16 Row Planters

(1) Wing wheel - Slave 3 cylinder
(2) Wing wheel - Assist 2 cylinder
(3) Transport wheel - Slave 1 cylinder
(4) Transport wheel - Master 3 cylinder
(5) Transport wheel - Master 2 cylinder
(6) Transport wheel - Master 1 cylinder
(7) Wing wheel - Assist 1 cylinder
(8) Wing wheel - Slave 2 cylinder
Fold Hydraulics

(1) Fold cylinder
(2) Tongue latch cylinder

Fan Hydraulics - Hopper Planters
Fan Hydraulics - Bulk Tank Planters

Marker Hydraulics
Weight Transfer Hydraulics
Liquid Fertilizer Plumbing Diagrams
30” Row Spacing Plumbing (S/N E1008B-)
30” Row Spacing Plumbing (S/N E1009B+)
70 cm Row Spacing Plumbing
Torque Value Chart

<table>
<thead>
<tr>
<th>Bolt Size</th>
<th>Bolt Head Identification</th>
<th>Bolt Head Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 2</td>
<td>Grade 5</td>
</tr>
<tr>
<td>in-tpi</td>
<td>N-m</td>
<td>ft-lb</td>
</tr>
<tr>
<td>⅛-20</td>
<td>7.4</td>
<td>5.6</td>
</tr>
<tr>
<td>⅛-28</td>
<td>8.5</td>
<td>6</td>
</tr>
<tr>
<td>5/32-18</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>5/32-24</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>1/8-16</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>3/16-24</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>7/32-14</td>
<td>43</td>
<td>32</td>
</tr>
<tr>
<td>7/32-20</td>
<td>49</td>
<td>36</td>
</tr>
<tr>
<td>5/32-13</td>
<td>66</td>
<td>49</td>
</tr>
<tr>
<td>5/16-20</td>
<td>75</td>
<td>55</td>
</tr>
<tr>
<td>9/32-12</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>9/32-18</td>
<td>105</td>
<td>79</td>
</tr>
<tr>
<td>5/32-11</td>
<td>130</td>
<td>97</td>
</tr>
<tr>
<td>5/32-18</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>5/32-10</td>
<td>235</td>
<td>170</td>
</tr>
<tr>
<td>5/32-16</td>
<td>260</td>
<td>190</td>
</tr>
<tr>
<td>3/8-9</td>
<td>225</td>
<td>165</td>
</tr>
<tr>
<td>3/16-14</td>
<td>250</td>
<td>185</td>
</tr>
<tr>
<td>1-8</td>
<td>340</td>
<td>250</td>
</tr>
<tr>
<td>1-12</td>
<td>370</td>
<td>275</td>
</tr>
<tr>
<td>1 1/8-7</td>
<td>480</td>
<td>355</td>
</tr>
<tr>
<td>1 1/8-12</td>
<td>540</td>
<td>395</td>
</tr>
<tr>
<td>1-7/8-6</td>
<td>680</td>
<td>500</td>
</tr>
<tr>
<td>1-7/8-12</td>
<td>750</td>
<td>555</td>
</tr>
<tr>
<td>1-1/8-6</td>
<td>890</td>
<td>655</td>
</tr>
<tr>
<td>1-1/8-12</td>
<td>1010</td>
<td>745</td>
</tr>
<tr>
<td>1-1/4-6</td>
<td>1180</td>
<td>870</td>
</tr>
<tr>
<td>1-1/4-12</td>
<td>1330</td>
<td>980</td>
</tr>
</tbody>
</table>

- a. in-tpi = nominal thread diameter in inches-threads per inch
- b. N·m = newton-meters
- c. mm x pitch = nominal thread diameter in mm x thread pitch
- d. ft-lb = foot pounds

Torque tolerance + 0%, -15% of torquing values. Unless otherwise specified use torque values listed above.

Tire Information

<table>
<thead>
<tr>
<th>Tire Size</th>
<th>Maximum Tire Pressure</th>
<th>Wheel Bolt Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF295/75R22.5 AD2</td>
<td>64 psi (441 kPa)</td>
<td>240 lb ft (325 Nm)</td>
</tr>
<tr>
<td>13.5 x 6 - Contact Wheel for 30” Row Spacing</td>
<td>40 psi (276 kPa)</td>
<td>-</td>
</tr>
</tbody>
</table>

Tire Warranty Information

All tires are warranted by the original manufacturer of the tire. Tire warranty information is found online at the manufacturer’s websites listed below. For assistance or information, contact your nearest authorized farm tire retailer.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firestone</td>
<td>www.firestoneag.com</td>
</tr>
</tbody>
</table>
Options

■ Auxiliary Hydraulics
When the planter is not in motion, auxiliary hydraulics enable the marker hydraulic circuit to drive other equipment, such as a seed auger.

■ Swath Command
Swath Command provides automatic section control. The two standard manually operated section clutches are replaced by individual row clutches. These row clutches are connected in pairs to the console CANBUS providing 6 or 8 sections under computer control.

Sections are automatically disabled when overrunning a previously planted area, or when entering a non-planting area as defined by a pre-loaded instruction.

The kit does not include, but will require, a GPS source option.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary Rear Hydraulics</td>
<td>411-537A</td>
</tr>
</tbody>
</table>

■ Dickey-john PM300 with Switch Box
Dickey-John PM300 Seed Monitoring System with Switch Box will report the following elements:
- Ground speed,
- up to two hopper levels, and
- seed rate at each row unit seed tube.

Medium and large seeds are individually counted with high accuracy. Small seeds, such as Milo, may be more difficult to sense, and instead, the seed monitoring system will indicate seed blockage.

The standard magnetic pickup at the ground drive allows the seed monitoring system to calculate and report seed population after the seed monitoring system has been configured for the preferred material rates. The switch box will perform the following operations:
- planter raising/lowering,
- planter folding/unfolding,
- independent electric clutch control for each side of the planter, if installed,
- hydraulic hitch operation, if installed, and
- marker raising/lowering, if installed.

The kit does not include, but will require, fasteners for the in-cab mounting brackets.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-Row Hopper Tru-Count Swath Command</td>
<td>402-710A</td>
</tr>
<tr>
<td></td>
<td>402-729A</td>
</tr>
<tr>
<td>16-Row Hopper Tru-Count Swath Command</td>
<td>402-738A</td>
</tr>
<tr>
<td></td>
<td>402-739A</td>
</tr>
<tr>
<td>AG-372 DGPS Receiver Kit</td>
<td>823-430C</td>
</tr>
<tr>
<td>Passcode, AG-372 Upgrade DGPS to OmniSTAR XP/HP (does not include subscription service or RTK radio, dealer installed)</td>
<td>823-431C</td>
</tr>
<tr>
<td>Passcode, AG-372 Upgrade OmniSTAR XP/HP to RTK</td>
<td>823-429C</td>
</tr>
<tr>
<td>RTK Radio, 900 Mhz</td>
<td>823-426C</td>
</tr>
<tr>
<td>12-Row PM300 Monitor w/Switch Box</td>
<td>431-007A</td>
</tr>
<tr>
<td>16-Row PM300 Monitor w/Switch Box</td>
<td>431-008A</td>
</tr>
</tbody>
</table>
Markers

Markers are a standard factory installed feature on the planter, but may be optionally deleted, for example, if all planting is done using GPS navigation.

Bulk Seed Tank Scale

A weighing system is available as an option for bulk tank planters.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP SCALE OPTION</td>
<td>403-848A</td>
</tr>
<tr>
<td>NO SCALE OPTION YP</td>
<td>403-849A</td>
</tr>
</tbody>
</table>

Weight Transfer System

For challenging conditions, a weight transfer kit is available to achieve consistent planting depth while keeping the wings level with the center section.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Transfer</td>
<td>411-538A</td>
</tr>
<tr>
<td>Hydraulic Drive Hose Kit - 12-Row</td>
<td>411-712S</td>
</tr>
<tr>
<td>Hydraulic Drive Hose Kit - 16-Row</td>
<td>411-714S</td>
</tr>
</tbody>
</table>

Rear Hitch

The rear hitch option has a 25000 lb (11340 kg) gross weight maximum allowable load and 1000 lb (454 kg) tongue weight. A trailer light harness is included.

Row Unit Press Wheels

The base planter includes a choice of press wheels. Additional press wheels are available and may be field installed.

The part numbers are not listed here because available press wheels are often region specific. See your Great Plains dealer.

Keeton® Seed Firmer

Order one per opener.
PL5700 Planter Table of Contents

Options

Gauge Wheel Scrapers

![Image 25298](Image)

Fertilizer System

Fertilizer Tanks

![Image 71188](Image)

![Image 71189](Image)

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>14” Gauge Wheel Scraper</td>
<td>431-006A</td>
</tr>
</tbody>
</table>

Fertilizer Orifice Plates

The manifold systems include size 28, 34, and 48 orifice plates. To order orifice plates, use the following part numbers. Order one per row unit.

<table>
<thead>
<tr>
<th>Orifice Size</th>
<th>Part Number</th>
<th>Part Diameter</th>
<th>Port Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>832-052C</td>
<td>0.020 inch</td>
<td>0.20 mm²</td>
</tr>
<tr>
<td>28*</td>
<td>832-056C</td>
<td>0.028 inch</td>
<td>0.40 mm²</td>
</tr>
<tr>
<td>34*</td>
<td>832-053C</td>
<td>0.034 inch</td>
<td>0.59 mm²</td>
</tr>
<tr>
<td>48*</td>
<td>832-054C</td>
<td>0.048 inch</td>
<td>1.17 mm²</td>
</tr>
<tr>
<td>59</td>
<td>832-057C</td>
<td>0.059 inch</td>
<td>1.76 mm²</td>
</tr>
<tr>
<td>80</td>
<td>832-055C</td>
<td>0.080 inch</td>
<td>3.24 mm²</td>
</tr>
<tr>
<td>98</td>
<td>832-059C</td>
<td>0.098 inch</td>
<td>4.87 mm²</td>
</tr>
</tbody>
</table>

* Sizes standard in many fertilizer bundles. Check your accessories before ordering.

VeriFlow Nozzles

To eliminate the need to change orifice plates, replace the standard nozzles with Spray Target VeriFlow nozzles. These nozzles contain a spring-loaded regulator that provides consistent back pressure over a wide range of rates and pressures.

Great Plains offers two models of VeriFlow nozzles. Order one nozzle for each active boom clamp.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzle Hi-VeriFlow1</td>
<td>829-143C</td>
</tr>
<tr>
<td>(0.25 to 2.8 gpm at 15 to 60 psi)</td>
<td></td>
</tr>
<tr>
<td>Nozzle VeriFlow1</td>
<td>829-144C</td>
</tr>
<tr>
<td>(0.15 to 1.5 gpm at 15 to 60 psi)</td>
<td></td>
</tr>
</tbody>
</table>
VisaGage II (S/N E1008B-)

The VisaGage II monitors flow rates for applying liquid fertilizer.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisaGage II Fertilizer 3-Section Control System</td>
<td>427-084A</td>
</tr>
</tbody>
</table>

VisaGage II (S/N E1009B+)

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisaGage II Fertilizer 2-Section Control System</td>
<td>427-108A</td>
</tr>
</tbody>
</table>

VisaGage II (S/N E1008B-)

The VisaGage II monitors flow rates for applying liquid fertilizer.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-Row VisaGage II</td>
<td>427-070A</td>
</tr>
<tr>
<td>16-Row VisaGage II</td>
<td>427-043A</td>
</tr>
</tbody>
</table>
Fertilizer Dribblers
Fertilizer dribblers apply liquid fertilizer slightly to the side of the closed furrow behind the press wheel. Dribblers are available in left-hand and right-hand offsets, for use on twin rows. Order one dribbler per row.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-Hand Fertilizer Dribbler</td>
<td>427-091A</td>
</tr>
<tr>
<td>Left-Hand Fertilizer Dribbler</td>
<td>427-090A</td>
</tr>
</tbody>
</table>

Seed Lubricant

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezee Glide Plus Talc and Graphite Mix 5 gal (18.9 liter) container</td>
<td>821-069C</td>
</tr>
<tr>
<td>Fluency Powder case quantity</td>
<td>821-074C</td>
</tr>
<tr>
<td>Fluency Powder single 4.4 pound bucket</td>
<td>821-075C</td>
</tr>
</tbody>
</table>

Unit Mount Row Cleaners

Unit Mount Row Cleaner (UMRC)
UMRC is a stand-alone assembly that uses a unit mount.

Unit Mounted Disk Coulters
Optional unit mounted disk coulters are available with fluted or turbo blades.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-Hand Fertilizer Dribbler</td>
<td>427-091A</td>
</tr>
<tr>
<td>Left-Hand Fertilizer Dribbler</td>
<td>427-090A</td>
</tr>
<tr>
<td>Ezee Glide Plus Talc and Graphite Mix 5 gal (18.9 liter) container</td>
<td>821-069C</td>
</tr>
<tr>
<td>Fluency Powder case quantity</td>
<td>821-074C</td>
</tr>
<tr>
<td>Fluency Powder single 4.4 pound bucket</td>
<td>821-075C</td>
</tr>
<tr>
<td>Double Row Cleaners - 12-Row</td>
<td>207-126A</td>
</tr>
<tr>
<td>Double Row Cleaners - 16-Row</td>
<td>207-113A</td>
</tr>
<tr>
<td>Double 30” Row Spacing 12-Row</td>
<td>207-130A</td>
</tr>
<tr>
<td>Double 30” Row Spacing 16-Row</td>
<td>207-129A</td>
</tr>
<tr>
<td>Double 70 cm Row Spacing 12-Row</td>
<td>207-318A</td>
</tr>
<tr>
<td>Double 70 cm Row Spacing 16-Row</td>
<td>207-317A</td>
</tr>
<tr>
<td>Unit Mount Coulter Fluted - 12-Row</td>
<td>204-552A</td>
</tr>
<tr>
<td>Unit Mount Coulter Fluted - 16-Row</td>
<td>204-551A</td>
</tr>
<tr>
<td>Unit Mount Coulter Turbo - 12-Row</td>
<td>204-554A</td>
</tr>
<tr>
<td>Unit Mount Coulter Turbo - 16-Row</td>
<td>204-553A</td>
</tr>
</tbody>
</table>
Coulter Blades
Replacement and alternate coulter blades (quantity is one per row unit):

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 inch Turbo Coulter Blade</td>
<td>820-327C</td>
</tr>
<tr>
<td>15 inch Fluted Coulter Blade</td>
<td>820-331C</td>
</tr>
</tbody>
</table>

- **Inside Disk Scrapers**
 When planting in moist or sticky soils, the inside disk scraper is useful in preventing buildup that might impair opener disk performance.
 The carbide scraper is spring loaded and requires no adjustment.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Disk Scraper</td>
<td>122-278S</td>
</tr>
</tbody>
</table>

- **Side Depth Wheel Scrapers**
 When planting in moist or sticky soils, the side depth wheel scrapers are useful in preventing buildup that might result in shallow planting.
 The scrapers mount on the bottom rear of the depth wheel arm, using the existing bolt and lock washer. The slot in the scraper is long enough to clear the lower grease fitting and allow adjustment as the wheel and scraper wear.
 Order one per row.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-inch Depth Wheel Scraper</td>
<td>404-825A</td>
</tr>
</tbody>
</table>

Seed Meter Disks

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank Disk (for row shut-off)</td>
<td>817-841C</td>
</tr>
<tr>
<td>Canola, 250 Cell</td>
<td>817-991C</td>
</tr>
<tr>
<td>Canola, 150 Cell</td>
<td>837-148C</td>
</tr>
<tr>
<td>Corn, 24 Cell (Large, Flat)</td>
<td>817-836C</td>
</tr>
<tr>
<td>Corn, 24 Cell (Large, Round)</td>
<td>817-794C</td>
</tr>
<tr>
<td>Corn, 24 Cell (Medium)</td>
<td>837-126C</td>
</tr>
<tr>
<td>Corn, 24 Cell (Small, Round, or Flat)</td>
<td>817-795C</td>
</tr>
<tr>
<td>Corn Disk Kit, 24 Cell - includes 1 Round-Small, -Medium, -Large, and 1 Flat-Large</td>
<td>403-554A</td>
</tr>
<tr>
<td>Corn, 40 Cell (Large, Flat)</td>
<td>817-838C</td>
</tr>
<tr>
<td>Corn, 40 Cell (Large, Round)</td>
<td>817-796C</td>
</tr>
<tr>
<td>Corn, 40 Cell (Medium)</td>
<td>837-127C</td>
</tr>
<tr>
<td>Corn Disk Kit, 40 Cell - includes 1 Round-Small, -Medium, -Large, and 1 Flat-Large</td>
<td>403-555A</td>
</tr>
<tr>
<td>Cotton, 60 Cell</td>
<td>817-857C</td>
</tr>
<tr>
<td>Edible Bean, 56 Cell (Large)</td>
<td>817-967C</td>
</tr>
<tr>
<td>Edible Bean, 60 Cell (Medium)</td>
<td>837-065C</td>
</tr>
<tr>
<td>Industrial Hemp, 5 Cell</td>
<td>834-364C</td>
</tr>
<tr>
<td>Industrial Hemp, 30 Cell</td>
<td>837-386C</td>
</tr>
<tr>
<td>Hill Drop Cotton, 12 Cell</td>
<td>837-186C</td>
</tr>
<tr>
<td>Milo and Pelletized Sugar Beet, 30 Cell</td>
<td>837-057C</td>
</tr>
<tr>
<td>Milo and Pelletized Sugar Beet, 65 Cell</td>
<td>817-849C</td>
</tr>
<tr>
<td>Milo and Pelletized Sugar Beet, 130 Cell</td>
<td>817-800C</td>
</tr>
<tr>
<td>Soybeans, 84 Cell (Medium)</td>
<td>817-798C</td>
</tr>
<tr>
<td>Soybeans, 168 Cell (Large)</td>
<td>403-551D</td>
</tr>
<tr>
<td>Sunflower, 60 Cell (Small)</td>
<td>837-234C</td>
</tr>
<tr>
<td>Sunflower, 60 Cell (Medium)</td>
<td>837-235C</td>
</tr>
<tr>
<td>Sunflower, 24 Cell (Large)</td>
<td>817-851C</td>
</tr>
<tr>
<td>Wheat/Rice, 84 Cell - volumetric</td>
<td>817-867C</td>
</tr>
</tbody>
</table>
- **Seed Meter Clean-Out Container**
One seed meter clean-out container is provided with the planter and located at the left end of the planter. Use the following information to order an additional or a replacement container.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Meter Clean Out Funnel</td>
<td>817-811C</td>
</tr>
</tbody>
</table>

- **Seed Tube Brush**
One brush is provided with the planter. Use the following to order an additional or a replacement brush.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed Tube Cleaner Brush</td>
<td>891-259C</td>
</tr>
</tbody>
</table>
Pre-Delivery Instructions

This section covers instructions exclusively for the dealer to assembly and produce a properly working machine for the customer. All workers must read and understand this entire manual before beginning assembly and setup.

Illustrations in this section were not completed during an actual assembly. For clarity, some illustrations may or may not include parts, assemblies, and other components at the same point in an actual assembly.

Ensure you have all the necessary tools and equipment before beginning assembly. Ensure the heavy machinery has the proper ratings for tasks.

As the assembly steps are completed, ensure removed items or items set aside a safe distance away from and will continue to allow for adequate space to safely complete assembly.

It is the dealer’s responsibility to unload the PL5700 planter. Unload all equipment before beginning assembly. Do not attempt any work with the PL5700 while on the truck.

It is the dealer’s responsibility to ensure any workers or others in close proximity of the planter are familiar and understand the contents of this manual, and are properly trained to work, assemble, operate, and perform maintenance on the planter and the other machinery used to assemble the PL5700 planter.

Crushing and Pinching Hazards

A falling section or part can cause severe injury or death by crushing. Always keep body and body parts out from under any parts or components of the planter. Ensure all equipment is properly rated for the load before attempting to unload or move parts, or assembly the planter. Ensure all equipment operates with smooth movements.

Secure Load

Obey all safety instructions from hoist and/or lifting equipment manufacturer. Be sure hoist chains and lift straps are properly rated for load and securely attached to planter part before moving or unloading parts.

Lift Failure Hazard

Do not lift on the wings. There is a significant risk of hinge failure and lift collapse; either will result in major planter and lift equipment damage, serious injury, and even death.

Requirement Checklist

☑️ Read and understand “Safety Information” on page 2 before beginning to assemble the planter.
☑️ Have at least three people on hand while assembling.
☑️ Appoint a designated observer and have a plan to safely complete assembly
☑️ Ensure the assembly location is level and free of obstructions and debris. Great Plains recommends an open, concrete area.
☑️ Have all major components and required tools. Test to ensure they are properly working.
☑️ Account for all loose components, fasteners, and pins shipped with the PL5200 planter.
☑️ Use a tractor of sufficient size and horsepower with at least three hydraulic circuits. Refer to “Specifications” on page 82 for tractor requirements.
☑️ Ensure safety decals and reflectors are located correctly and legible. Replace if improperly located or damaged. Refer to “Safety Decals” on page 5.
☑️ Have a copy of the parts manual on hand for reference. If unsure of proper placement or use of any part or fastener, refer to the parts manual.
☑️ Ensure all moving parts are moving freely, bolts are tighten to torque, and cotter pins are spread.
☑️ Check for proper tension and alignment on all drive chains.
☑️ Inflate tires to recommended pressure as listed on “Tire Information” on page 101.
☑️ Tighten wheel bolts to torque as specified on “Torque Value Chart” on page 101.

Tools Required

- Industrial lift rated for 30,000 lbs (14,000 kg) or greater with a 3-point hitch attachment.
- PL5700 Planter parts manual (411-681P).
- General hand tools.
- Suitable tractor with a 3-point hitch. See “Specifications” on page 82.
Check Valve Removal

High Pressure Fluid Hazard

The hydraulic system comes from the factory fully charged. Great Plains strongly recommends that all hydraulic system adjustments and repair to be completed by a trained professional who is knowledgeable about how to safely complete hydraulic system work. Do not pinch or damage hydraulic hoses. Compromising a closed hydraulic system can cause serious injury or death.

1. After unloading the planter, lower planter to the ground.
2. Disconnect rod end hoses on outside center section wheel hydraulic lift cylinders.

3. Disconnect check valve (810-037C) and the accompanying adapters (841-204C and 811-133C). Do not remove elbow fitting from hydraulic cylinder. Set aside removed parts.
4. Reconnect the hydraulic hoses to the rod end elbow fitting.
5. Cycle the hydraulic system multiple times to rephase the cylinders and purge air out of the system.
Great Plains (a division of Great Plains Manufacturing, Inc.) warrants to the original purchaser that this Great Plains machine will be free from defects in material and workmanship for a period of one year (Parts & Labor) from the first use date when used as intended for personal use; ninety days for custom/commercial or rental use.

Second year limited warranty covers Parts ONLY (personal usage only, excluding labor and wear items). This warranty is limited to the replacement of any defective part by Great Plains. Great Plains reserves the right to inspect any equipment or part which are claimed to have been defective in material or workmanship.

The following items and/or conditions are NOT COVERED UNDER WARRANTY: Failures resulting from the abuse or misuse of the equipment, failures occurring as a result of accidental damage or Force Majeure, failures resulting from alterations or modifications, failures caused by lack of normal maintenance as outlined in the operator’s manual, repairs made by non-authorized personnel, items replaced or repaired due to normal wear (such as wear items and ground-engaging components including, but not limited to, disc blades, chisel points, tires, bushings, and scrapers), repeat repair due to improper diagnosis or improper repair by the dealer, temporary repairs, service call and/or mileage to and from customer location, overtime premium, or unit hauling expenses. The warranty may be voided if the unit is towed at speeds in excess of 20 miles per hour (32 kilometers per hour), or failures occurring from soils with rocks, stumps, or other obstructions.

Great Plains reserves the right to make changes in materials or design of the product at any time without notice. The warranty shall not be interpreted to render Great Plains liable for damages of any kind, direct or consequential or contingent to property. Furthermore, Great Plains shall not be liable for damages resulting from any cause beyond its control. This warranty does not extend to crop loss, losses caused by planting or harvest delays or any expense or loss of labor, supplies, rental machinery, or for any other reason.

No other warranty of any kind whatsoever expressed or implied, is made with respect to this sale; and all implied warranties of merchantability and fitness for a particular purpose which exceed the obligations set forth in this written warranty are hereby disclaimed and excluded from this sale.

This warranty is not valid unless registered by a certified Great Plains dealer.

Effective July 15, 2020
Index

A
AccuShot fertilizer system .. 49
air box .. 22,78
clean-out ... 58
residue .. 58
air pressure .. 76,77
air system
bulk tank .. 22
clean-out ... 58
hoppers .. 19
auxiliary hydraulics ... 28,102

B
back-flow .. 71
baffles .. 19,23,28,73,75
bridging .. 71,72
bulk seed tank
loading .. 28
scale .. 103
case drain hose ... 21,24
chain lubrication ... 63
chain slack .. 63
check valve .. 25
chemicals .. 3
disk scraper .. 107
disk scrapers .. 64
disk separator .. 37,64
disks .. 39,79
disk-to-wheel angle .. 40
disk-to-wheel clearance ... 40
doubles .. 27
drop brush .. 20,23,61,62,77
cylinder lock ... 16
disk scraper ... 107
disk scrapers ... 64
disk separator .. 37,64
disks .. 39,79
disk-to-wheel angle .. 40
disk-to-wheel clearance ... 40
doubles .. 27
earplugs .. 3
electric cable .. 12
Ezee Glide Plus .. 75,78
fan adjustment .. 26
fan hydraulics
bulk tank .. 24
hoppers .. 21
fan pressure hose .. 21,25
fan speed .. 76,78
fertilizer .. 45,65,80
dribblers .. 106
ground drive ... 47,105,106
hydraulic drive .. 48,105
pump .. 80,81
rate .. 47
relief valve ... 47
section control .. 104
strainer ... 46,66,80
system .. 104
tank .. 104
fold hydraulics .. 16
folding .. 18
G
grease fittings .. 66
H
height switch .. 36
hitching .. 11
hopper .. 20
loading .. 29
hydraulic
fluid .. 4
hose colors .. 11
hose connections .. 11
hydraulic drive .. 33,36
hydraulic hitch .. 12
hydraulic system maintenance 56
hydraulic system repair ... 16,56
hydraulics
fold .. 16
lift .. 16
I
information symbol ... 2
IRC .. 36
K
Keeton® seed firmer ... 37,44,103
knockout brush .. 63
L
leveling .. 13
lift hydraulics ... 16
lights .. 4
lowering ... 16
lubrication ... 66
M
maintenance safety ... 3
marker ... 45,74,79,103
disk .. 14,79
disk hub ... 57
extension ... 14
shear bolt .. 57
motor return hose ... 21,25
n
N
notice symbol ... 2
open elevator disk ... 37,39
angle .. 39
stagger .. 39
orifice plate .. 80,81,104
P
parking ... 49
planting
depth .. 39
rate .. 33
press wheel ... 37,78,79,103
adjustment ... 41
centering ... 42
down pressure ... 42
stagger .. 42
pressure gauge ... 20,23
pressure sensor chamber ... 20,23
pressure sensor port ... 20,23
pressurization air inlet ... 36
pressurization air outlet .. 36
pressure gauge ... 20,23
range sprocket .. 33,34
rear hitch ... 103
relief valve ... 80
rephase hydraulic system .. 16
reverse fan .. 25
row cleaner ... 37,42,106
row unit .. 36
down pressure ... 37
S
safety ... 11
safety chain ... 4
safety decals ... 5
safety symbol .. 2
scraper ... 37,65,107
seed cells ... 20,23
seed delivery fan ... 22
seed disk ... 30,63,107
seed firmer ... 37,44,75
seed clamp ... 37,65
seed inlet ... 23,36
gate .. 20,23,31,76,77
seed lubricant .. 29,75,77,106
seed lubricants ... 110
seed meter ... 36
adjustment ... 30
air flow ... 23
brushes ... 61
clean-out ... 59
clean-out container .. 108
disk ... 30,63,107
drive chain ... 57,64
operation ... 32
rain cover ... 30
seed pool ... 20,23,70
slope ... 32
troubleshooting .. 70
seed population .. 73
seed rate ... 75
seed tube ... 20,23,37,74,75,76
brush ... 108
clean-out ... 60

Great Plains | 411-681M | 11/11/2020 114
sensor 20, 23, 73
serial number 1
shutdown 4
shut-off gate 58, 59
side depth wheel 37, 40, 64
 adjustment 40
scraper 41, 107
skips .. 27
speed calibration 74, 77
speed sensor 13, 73, 76, 77
storage 4, 67
strip brush 20, 23, 61, 62, 77
Swath Command™ 44, 102
T
T-handle 37, 39
tire safety 3
tires .. 101
transmission sprockets 33, 34
transport 48
transport locks 16
transport speed 4
tufted brush 20, 23, 61, 75
U
UMC-RC 42
UMRC 42
unfolding 17, 52
unit mount coulter 37, 43
V
VeriFlow nozzle 104
VisaGage II 105
W
waste disposal 4
weight transfer 103
wheel bearings 67
wing locks 16
Numerics
2-point hitch 12
Table of Contents