Read the operator manual entirely. When you see this symbol, the subsequent instructions and warnings are serious - follow without exception. Your life and the lives of others depend on it!

Illustrations may show optional equipment not supplied with standard unit or may depict similar YP1625 models where a topic is identical.
Machine Identification

Record your machine details in the log below. If you replace this manual, be sure to transfer this information to the new manual.

If you or the dealer have added options not originally ordered with the machine, or removed options that were originally ordered, the weights and measurements are no longer accurate for your machine. Update the record by adding the machine weight and measurements with the option(s) weight and measurements.

<table>
<thead>
<tr>
<th>Model Number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Number</td>
<td></td>
</tr>
<tr>
<td>Machine Height</td>
<td></td>
</tr>
<tr>
<td>Machine Length</td>
<td></td>
</tr>
<tr>
<td>Machine Width</td>
<td></td>
</tr>
<tr>
<td>Machine Weight</td>
<td></td>
</tr>
<tr>
<td>Year of Construction</td>
<td></td>
</tr>
<tr>
<td>Delivery Date</td>
<td></td>
</tr>
<tr>
<td>First Operation</td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dealer Contact Information

Name: ____________________________
Street: __________________________
City/State: _______________________
Telephone: _______________________
Email: ___________________________
Dealer’s Customer No.: ___________
Table of Contents

Important Safety Information..1
Safety Decals ...7

Introduction ..13
Description of Unit ...13
Intended Usage ...13
Document Family ..13
Covered Models ..13
Using This Manual...13
Definitions ..13
Owner Assistance...14

Preparation and Setup ..15
Initial Setup ...15
Pre-Planting Setup ...15
Hitching Tractor to Planter...16
Hydraulic Hookup ...16
Hydraulic Hose Hookup..16
Protecting Hydraulic Motor Seals...17
3-Point Hitch ..18
Hitching with Hydraulic Tongue (Option).....................................18
Raising/Lowering Tongue..19
Hitching with Either Hitch ...19
Electrical Hookup ...19
Store Main Parking Stand..20
Lock Up Fertilizer Drive..20

Operating Instructions ..21
Pre-Start Checklist...21
Wing Lock Overview..21
Unfolding The Planter...22
Prepare Hitched Tractor and Planter ..22
Prepare Transport Hooks...22
Release Wing Locks ...23
Re-Phase Fold Cylinders..23
Partially Unfold ..23
Lower Tongue ..23
Fully Unfold ...23
Remove and Store Transport Locks ..24
Unfold Closeout..25
Raising/Lowering Planter...26
Raising Planter ..26
Lowering Planter ...26
Re-phasing Lift System...27

Folding the Planter...27
Shut off Fan and Hydraulic Alternator ..28
Set Tractor and Tongue ...28
Raise Planter ..28
Install Lock Channels ..28

Activate Fold Solenoid Valves...29
Begin Folding ...29
Raise Tongue ..29
Complete Fold ..29
Lower Tongue ...29
Re-phasing Fold System..29
Transporting..29
Weights of Representative Planter Configurations30

Loading Materials..31
Material Loading Overview..31
Mounting a Hopper or Bulk Seed Box ...31
Loading Hopper with Seed..34
Using Auxiliary Hydraulic Circuit 34
Dismounting a Hopper or Seed Box ...36
Fertilizer Tanks (Option)..37
Filling Tanks ..37
Ground Drive Pump ..37
Hydraulic Pump Fertilizer System..37
Field Setup Checklist...37
Monitor Operation ...39
Air System Operation ..39
Air System Overview ...40
Fan Circuit Operation 41
Fan General Operating Information 42
Marker Operation..43
Field Operation ..43
Skip and Double Checks 44
Parking ...45
Storage ...46
Storage: Fertilizer Option..46

Adjustments ...47
Fan and Meter Pressurization Adjustment48
Fan Circuit Operation 41
Fan General Operating Information 42
Tan: 48
Fine-Tuning Meter Pressurization ..50
Checking Planting Rate ...50
Checking Singulated Rate..51
Setting Fertilizer Rate..52
Marker Adjustments ..52
Dual Marker Speed Adjustment ..53
Marker Disk Adjustment...53
Height Switch ..54
Row Implement Adjustments...55
Frame-Mounted Row Accessories...55
Terra-Tine™ Adjustment 55
Frame-Mounted Coulters 56
Vantage I Applicator 56

Brand and Product Names that appear and are owned by others are trademarks of their respective owners.

Printed in the United States of America

Great Plains Manufacturing, Inc. provides this publication “as is” without warranty of any kind, either expressed or implied. While every precaution has been taken in the preparation of this manual, Great Plains Manufacturing, Inc. assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein. Great Plains Manufacturing, Inc. reserves the right to revise and improve its products as it sees fit. This publication describes the state of this product at the time of its publication, and may not reflect the product in the future.
Trademarks of Great Plains Manufacturing, Inc. include: AccuShot, Max-Chisel, Row-Pro, Singulator Plus, Short Disk, Swath Command, Terra-Tine, Ultra-Chisel, and X-Press.
Great Plains | 411-242M | 2019-12-05 | Cover | Index | iii
Table of Contents

25 Series Row-Unit Adjustments.................................57
 Row-Unit Down Pressure58
 Spring Down Pressure 58
 Unit-Mount Cleaner Adjustments60
 Unit-Mounted Coulter Adjustments61
 Row-Unit Opener Disc Adjustments62
 Setting Planting Depth 62
 Side Gauge Wheel Adjustments63
 Adjusting Gauge Wheel Scrapers64
 Meter Adjustments ...65
 Meter Rain Cover 65
 Seed Inlet Shutter Adjustment 65
 Optimal Seed Pool Slopes 66
 Meter Re-Fill 66
 Air-Pro® Meter Disk Installation67
 Removing a Seed Disk 68
 Row Unit Shut-Off ..68
 Seed Firmer Adjustments71
 Keeton® Seed Firmer Adjustment 71
 Seed-Lok® Seed Firmer Lock-Up 72
 Seed-Lok® Seed Firmer Lock-Up (older style) 72
 Press Wheel Adjustments73
 Press Wheel Centering 73

Troubleshooting ...74
 Planting Rate Problems ..74
 Suggested Furrow Check: 74
 Seed Pool Troubleshooting75
 Seed Pool Recovery ..76
 Population Troubleshooting Charts76

Maintenance and Lubrication ...83
 Maintenance ...83
 Tongue Lift Cylinder Locks83
 Material Clean-Out ..84
 Hopper Clean-Out ...85
 Air System Clean-Out ...85
 Meter Clean-Out ..87
 Funnel Conversion 87
 Alternate Meter Clean-Out 88
 Seed Tube Clean-Out 88
 Meter Brush Maintenance89
 Meter Brush Replacement90
 Seed Disk Maintenance ...91
 Cleaning and Storing Seed Disks 91
 Air Box Residue Clean-Out92
 Bleeding Hydraulics ..93
 Bleeding Lift Hydraulics93
 Bleeding Fold Cylinder Hydraulics93
 Bleeding Marker Hydraulics94
 Marker Maintenance ...94
 Disc Spreaders and Scrapers95
 25 Series Row-Unit Side Wheels95
 Fertilizer System Maintenance96
 Liquid Fertilizer Strainer96
 Lubrication ..98
 Seed Lubricants ..104

Appendix A - Reference Information117
 Specifications and Capacities117
 Tire Inflation Chart ..118
 Hydraulic Diagrams ..119

Appendix B - Pre-Delivery ..125

Appendix C - Initial Setup ..130
 Hydraulic Charge and Bleed130
 Console Installation ...130
 Monitor Setup ..130
 YP1625IR Row Spacing Setup Data 130
 Level Planter ..131
 Wing Alignment ...132
 Marker Setup ..133
 Marker Extension ...133

Appendix D - Option Installation134
 122-278S Scraper Installation134

Appendix R - Row-Pro™ Troubleshooting142
 Warranty ...143
Important Safety Information

Look for Safety Symbol
The SAFETY ALERT SYMBOL indicates there is a potential hazard to personal safety involved and extra safety precaution must be taken. When you see this symbol, be alert and carefully read the message that follows it. In addition to design and configuration of equipment, hazard control and accident prevention are dependent upon the awareness, concern, prudence and proper training of personnel involved in the operation, transport, maintenance and storage of equipment.

Be Aware of Signal Words
Signal words designate a degree or level of hazard seriousness.

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. This signal word is limited to the most extreme situations, typically for machine components that, for functional purposes, cannot be guarded.

WARNING indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury, and includes hazards that are exposed when guards are removed. It may also be used to alert against unsafe practices.

CAUTION indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

Prepare for Emergencies
▲ Be prepared if a fire starts
▲ Keep a first aid kit and fire extinguisher handy.
▲ Keep emergency numbers for doctor, ambulance, hospital and fire department near phone.

Be Familiar with Safety Decals
▲ Read and understand “Safety Decals” on page 7, thoroughly.
▲ Read all instructions noted on the decals.
▲ Keep decals clean. Replace damaged, faded and illegible decals.
PTO-Specific Hazards

Applies only to optional PTO pump.
Even if you are experienced in PTO operations, review the “Using PTO Safely” topic on page 2 of the PTO manual. Topics in that manual dealing with PTO hazards include this PTO alert symbol and the standard alert symbol.

PTO hazards include:

▲ **Entanglement:**
resulting in abrasions, lacerations, crushing, dismemberment or death. Loose clothing, cuffs, frays, laces, coattails, drawstrings, hair or scarves are taken up by a PTO faster than you can react, and with overpowering torque.

▲ **Flailing machinery:**
resulting from an unsecured torque arm, resulting in serious injury or death.

▲ **High pressure fluid sprays:**
due to hydraulic hose failure, resulting from PTO shaft over-speed or damaged hoses.

Use A Safety Chain (Hydraulic Hitch)

▲ Use a safety chain to help control drawn machinery should it separate from tractor draw bar.

▲ Use a chain with a strength rating equal to or greater than the gross weight of towed machinery.

▲ Attach chain to tractor draw bar support or other specified anchor location. Allow only enough slack to permit turning.

▲ Replace chain if any links or end fittings are broken, stretched or damaged.

▲ Do not use safety chain for towing.

Avoid High Pressure Fluids

Escaping fluid under pressure can penetrate the skin, causing serious injury.

▲ Avoid the hazard by relieving pressure before disconnecting hydraulic lines.

▲ Use a piece of paper or cardboard, NOT BODY PARTS, to check for suspected leaks.

▲ Wear protective gloves and safety glasses or goggles when working with hydraulic systems.

▲ If an accident occurs, seek immediate medical assistance from a physician familiar with this type of injury.
Wear Protective Equipment

Great Plains advises all users of chemical pesticides or herbicides to use the following personal safety equipment.

- **Waterproof, wide-brimmed hat**
- **Waterproof apron.**
- **Face shield, goggles or full face respirator.**
- **Goggles with side shields or a full face respirator is required if handling or applying dusts, wettable powders, or granules or if being exposed to spray mist.**
- **Cartridge-type respirator approved for pesticide vapors unless label specifies another type of respirator.**
- **Waterproof, unlined gloves. Neoprene gloves are recommended.**
- **Cloth coveralls/outer clothing changed daily; waterproof items if there is a chance of becoming wet with spray.**
- **Waterproof boots or foot coverings.**
- **Do not wear contaminated clothing. Wash protective clothing and equipment with soap and water after each use. Personal clothing must be laundered separately from household articles.**
- **Clothing contaminated with certain pesticides must be destroyed according to state and local regulations. Read chemical label for specific instructions.**
- **Wear clothing and equipment appropriate for the job. Avoid loose-fitting clothing.**
- **Prolonged exposure to loud noise can cause hearing impairment or loss. Wear suitable hearing protection such as earmuffs or earplugs.**
- **Avoid wearing entertainment headphones while operating machinery. Operating equipment safely requires the full attention of the operator.**
Handle Chemicals Properly

▲ Read and follow chemical manufacturer’s instructions.
▲ Wear protective clothing.
▲ Handle all chemicals with care.
▲ Agricultural chemicals can be dangerous. Improper use can seriously injure persons, animals, plants, soil and property.
▲ Inhaling smoke from any type of chemical fire is a serious health hazard.
▲ Store or dispose of unused chemicals as specified by the chemical manufacturer.
▲ Before adding chemical to the tank, make sure tank is at least half full. Do not pour concentrate into an empty tank.
▲ Never leave fill hose attached to the sprayer after filling tank. Chemicals in tank can siphon out of tank and contaminate freshwater source.
▲ Immediately and thoroughly flush any area of the body that is contaminated by chemicals.
▲ Do not touch plumbing components with mouth or lips.
▲ If chemical is swallowed, carefully follow the chemical manufacturer’s recommendations and consult with a doctor.
▲ If persons are exposed to a chemical in a way that could affect their health, consult a doctor immediately with the chemical label or container in hand. Any delay could cause serious illness or death.
▲ Dispose of empty chemical containers properly. By law rinsing of the used chemical container must be repeated three times. Puncture the container to prevent future use. An alternative is to jet-rinse or pressure rinse the container.
▲ After working with chemicals, wash hands and face before eating. Shower when application is completed for the day.
▲ Never wash out the tanks within 100 feet (30 m) of any freshwater source or in a car wash.
▲ Rinse out the tank. Apply rinse water on last field treated.

Keep Riders Off Machinery

Riders obstruct the operator’s view. Riders could be struck by foreign objects or thrown from the machine.
▲ Never allow children to operate equipment.
▲ Keep all bystanders away from machine during operation.

Use Safety Lights and Devices

Slow-moving tractors and towed implements can create a hazard when driven on public roads. They are difficult to see, especially at night.
▲ Use flashing warning lights and turn signals whenever driving on public roads.
▲ Use lights and devices provided with implement
Transport Machinery Safely

Maximum transport speed for implement is 20 mph (32 km/h). Some rough terrains require a slower speed. Sudden braking can cause a towed load to swerve and upset.

▲ Do not exceed 20 mph (32 km/h). Never travel speeds which do not allow adequate control of steering and stopping. Reduce speed if towed load is not equipped with brakes.
▲ Comply with state and local laws.
▲ Do not tow an implement that, when fully loaded, weighs more than 1.5 times the weight of towing vehicle.
▲ Carry reflectors or flags to mark planter in case of breakdown on the road.
▲ Keep clear of overhead power lines and other obstructions when transporting. Refer to transport dimensions under “Specifications and Capacities” on page 117.
▲ Do not fold or unfold the planter while the tractor is moving.

Shutdown and Storage

▲ Lower planter, put tractor in park, turn off engine, and remove the key.
▲ Secure planter using blocks and supports provided.
▲ Detach and store planter in an area where children normally do not play.

Tire Safety

Tire changing can be dangerous and should be performed by trained personnel using correct tools and equipment.

▲ When inflating tires, use a clip-on chuck and extension hose long enough for you to stand to one side—not in front of or over tire assembly. Use a safety cage if available.
▲ When removing and installing wheels, use wheel-handling equipment adequate for weight involved.
Practice Safe Maintenance

- Understand procedure before doing work. Use proper tools and equipment. Refer to this manual for additional information.
- Work in a clean, dry area.
- Lower the planter, put tractor in park, turn off engine, and remove key before performing maintenance.
- Make sure all moving parts have stopped and all system pressure is relieved.
- Allow planter to cool completely.
- Disconnect battery ground cable (-) before servicing or adjusting electrical systems or before welding on planter.
- Inspect all parts. Make sure parts are in good condition and installed properly.
- Remove buildup of grease, oil or debris.
- Remove all tools and unused parts from planter before operation.

Safety At All Times

Thoroughly read and understand the instructions in this manual before operation. Read all instructions noted on the safety decals.

- Be familiar with all planter functions.
- Operate machinery from the driver’s seat only.
- Do not leave planter unattended with tractor engine running.
- Do not dismount a moving tractor. Dismounting a moving tractor could cause serious injury or death.
- Do not stand between the tractor and planter during hitching.
- Keep hands, feet and clothing away from power-driven parts.
- Wear snug-fitting clothing to avoid entanglement with moving parts.
- Watch out for wires, trees, etc., when folding and raising planter. Make sure all persons are clear of working area.
Safety Decals

Safety Reflectors and Decals

Your implement comes equipped with all lights, safety reflectors and decals in place. They were designed to help you safely operate your implement.

▲ Read and follow decal directions.
▲ Keep lights in operating condition.
▲ Keep all safety decals clean and legible.
▲ Replace all damaged or missing decals. Order new decals from your Great Plains dealer. Refer to this section for proper decal placement.
▲ When ordering new parts or components, also request corresponding safety decals.

To install new decals:
1. Clean the area on which the decal is to be placed.
2. Peel backing from decal. Press firmly on surface, being careful not to cause air bubbles under decal.

Slow Moving Vehicle Reflector

818-055C

On the back of the planter, walkboard center; 1 total
See “Transporting” on page 30.

Red Reflectors

838-266C

On the back of seed frame each end, and on the rear face of each light mounting bar; 4 total
Amber Reflectors
838-265C

One each on rear face of wing tool bar at wing lock, one each on front face of light bars; 4 total

Daytime Reflectors
838-267C

On the back of seed frame, inside red reflectors, on the rear face of the light bar; 4 total

Danger: Crushing Hazard
818-590C

On the hitch, one total.
See “Hitching Tractor to Planter” on page 16.

Danger: Electrocution Hazard (Option)
838-599C

On marker section each end, two total.
See “Marker Operation” on page 43.
Danger: Rotating Driveline (Option)
858-030C

On front face of hydraulic reservoir; one total

Warning: Pinch-Crush
818-045C

Above both tires, two total

Warning: High Pressure Fluid Hazard
818-339C

On the tongue, one total
See “Hydraulic Hose Hookup” on page 16.

Warning: Overhead Hazard (Option)
818-580C

On marker section each end, two total
See “Marker Operation” on page 43.
Warning: Pinch-Shear Hazard (Option)
818-579C

On marker section each end, two total
See “Marker Operation” on page 43.

Warning: Excessive Speed
818-188C

On the tongue, one total
See “Transporting” on page 30.

Warning: Hot Fluid (Option)
858-004C

On front face of hydraulic reservoir; one total

Caution: 1000 rpm PTO (Option)
818-240C

On front face of hydraulic reservoir; one total
Caution: Tires Not A Step
818-398C

Above both tires, two total
In transport configuration, wing gauge wheels are off the ground and free to spin. In field configuration, at higher row unit down-forces, wing gauge wheels may have little or no ground traction.

Caution: Tire Pressure
844-125C

On hubcap side rim of each gauge wheel; 2 total

Caution: General
838-995C

On right side of hitch; 1 total
Warning: Tire Pressure
858-792C

To Avoid Injury or Machine Damage from Improper Tire Inflation or Torquing of Wheel Bolts:
* Maximum inflation pressure for tires is 40 psi (276 kPa).
* Torque wheel bolts to 295 ft-lbs (427 N-m).

On outside rim of each main transport wheel; 2 total
Introduction

Great Plains welcomes you to its growing family of new product owners. This planter has been designed with care and built by skilled workers using quality materials. Proper setup, maintenance, and safe operating practices will help you get years of satisfactory use.

Description of Unit

The 40-Foot 2-Section Yield-Pro® Planters are pull-type planting implements for use in conventional till, minimum-till, or light no-till conditions.

Yield-Pro® Planters have 25 Series, side-depth-control row-units and Air-Pro® seed meters. Optional unit-mounted coulters are suitable for light to moderate no-till conditions only. The planter folds for transport.

Intended Usage

Use the planter to seed production-agriculture crops only. Do not modify the planter for use with attachments other than Great Plains options and accessories specified for use with the planter.

Document Family

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>411-242M</td>
<td>Operator Manual (this manual)</td>
</tr>
<tr>
<td>411-242B</td>
<td>Seed Rate Manual</td>
</tr>
<tr>
<td>401-625P</td>
<td>Parts Manual</td>
</tr>
<tr>
<td>110011650</td>
<td>DICKEY-john® IntelliAg® manuals:</td>
</tr>
<tr>
<td>110011606</td>
<td>Planter/Drill Control, User Level 2&3</td>
</tr>
<tr>
<td>Al-120 12 in. Virtual Terminal</td>
<td></td>
</tr>
</tbody>
</table>

Covered Models

YP1625IR-2420 40-Foot, 24-Row
YP1625IR-32TR 40-Foot, 32-Row (16 Twin), 30 in.

Using This Manual

This manual familiarizes you with safety, assembly, operation, adjustments, troubleshooting and maintenance. Read this manual and follow the recommendations to help ensure safe and efficient operation.

The information in this manual is current at printing. Some parts may change to assure top performance.

Definitions

The following terms are used throughout this manual.

Right-hand and left-hand as used in this manual are determined by facing the direction the machine will travel while in use unless otherwise stated. An orientation rose in some line art illustrations shows the directions of: Up, Back, Left, Down, Front, Right.

NOTICE

A crucial point of information related to the preceding topic. Read and follow the directions provided before continuing, to ensure safety, avoidance of machine damage, and to achieve desired field results.

Useful information related to the preceding topic.
Owner Assistance

If you need customer service or repair parts, contact a Great Plains dealer. They have trained personnel, repair parts, and equipment specially designed for Great Plains products.

Refer to Figure 2

Your planter’s parts were specially designed and should only be replaced with Great Plains parts. Always use the serial and model number when ordering parts from your Great Plains dealer. The serial-number plate is located on the rear face of the right axle.

Record your Planter model and serial number here for quick reference:
Model Number: ____________________________
Serial Number: ____________________________

Further Assistance

Great Plains Manufacturing, Inc. and your Great Plains dealer want you to be satisfied with your new YP1225A & YP1625A. If for any reason you do not understand any part of this manual or are otherwise dissatisfied, please take the following actions first:

1. Discuss the matter with your dealership service manager. Make sure they are aware of any problems so they can assist you.
2. If you are still unsatisfied, seek out the owner or general manager of the dealership.

If your dealer is unable to resolve the problem or the issue is parts related, please contact:

Great Plains Service Department
1525 E. North St.
P.O. Box 5060
Salina, KS 67402-5060

Or go to www.greatplainsag.com and follow the contact information at the bottom of your screen for our service department.
Preparation and Setup

This section helps you prepare your tractor and planter for use. Before using the in the field, you must hitch the planter to a suitable tractor and level the planter.

Initial Setup

If the planter has just been delivered, or broken down for reshipment, these items need to be completed prior to first field use:

- "Hydraulic Charge and Bleed" on page 130, which includes:
- "Console Installation" on page 130
- "Level Planter" on page 131, and
- "Marker Setup" on page 133.

You may also need to install features, options and accessories that were not factory- or dealer-installed.

Pre-Planting Setup

The balance of this section covers items that need to be completed or checked prior to each field use of the planter.

1. Read and understand "Important Safety Information" on page 1.
2. Check that all working parts are moving freely, bolts are tight, and cotter pins are spread.
3. Check that all zerks are in place and lubricated. See "Lubrication" on page 98.
4. Check that all safety decals and reflectors are correctly located and legible. Replace if damaged. See "Safety Decals" on page 7
5. Inflate tires to pressure recommended and tighten wheel bolts as specified. See "Tire Inflation Chart" on page 118.
6. If returning the planter to service from storage, remove any grease used to protect cylinder rods.
Hitching Tractor to Planter

DANGER

Crushing Hazard:
Do not stand or place any part of your body between planter and moving tractor. You may be severely injured or killed by being crushed between the tractor and planter. Stop tractor engine and set park brake before attaching cables and hoses.

Hydraulic Hookup

WARNING

High Pressure Fluid Hazard:
Relieve pressure before disconnecting hydraulic lines. Escaping fluid under pressure can have sufficient pressure to penetrate the skin causing serious injury. Use a piece of paper or cardboard, NOT BODY PARTS, to check for leaks. Wear protective gloves and safety glasses or goggles when working with hydraulic systems. If an accident occurs, seek immediate medical attention from a physician familiar with this type of injury.

Hydraulic Hose Hookup

If a PTO pump is installed, no Black or Yellow hookups will be present.

Refer to Figure 3

Great Plains hydraulic hoses have color coded handle grips to help you hookup hoses to your tractor outlets. Hoses that go to the same remote valve are marked with the same color.

Current Style Color Coded Hose Handles

<table>
<thead>
<tr>
<th>Color</th>
<th>Hydraulic Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray</td>
<td>Fold/Marker</td>
</tr>
<tr>
<td>Blue</td>
<td>Lift/Tongue</td>
</tr>
<tr>
<td>Black</td>
<td>Fan</td>
</tr>
<tr>
<td>Yellow</td>
<td>Hydraulic Alternator</td>
</tr>
</tbody>
</table>

To distinguish hoses on the same hydraulic circuit, refer to the symbol molded into the handle grip. Hoses with an extended-cylinder symbol feed cylinder base ends. Hoses with a retracted-cylinder symbol feed cylinder rod ends.

For hydraulic fan and drive motors, connect the hose under the retracted cylinder symbol to the pressure side of the motor. Connect the hose under the extended cylinder symbol to the return side of the motor.

The fan motor further requires hookup of a third line, which returns hydraulic fluid from the fan motor case.
Protecting Hydraulic Motor Seals

Low Pressure (Case) Drain Connection

7. Attach case drain hose to low pressure drain connection.

8. Connect low pressure return hose to low pressure return connector.

9. If the tractor has a limited number of remotes capable of continuous flow, use them for the hydraulic fan and the hydraulic alternator. (See “Specifications and Capacities” on page 117 for tractor requirements.)

NOTICE

Motor Seal Damage Risk:
Case Drain Hose must be attached first, prior to inlet and return hoses being connected.
Case Drain Hose must be detached last, to prevent damage to the fan motor.

NOTICE

Hydraulic Motor Performance Risk:
DO NOT hook case drain line to a “power-beyond port”.
3-Point Hitch

Refer to Figure 4

10. Connect your tractor 3-point to the planter 3-point hitch. If using quick hitch be sure planter locks into hitch securely.

11. Raise tractor 3-point just enough to relieve pressure off of the parking stand.

12. Store 3-point stands ①. There are two methods:
 b. Remove both pins. Invert stand. Re-pin.

CAUTION
Load Sway Hazard:
Adjust 3-point hitch arms and sway blocks to minimize any side-to-side sway to assure proper tracking in the field, and safe road travel.

13. Connect hydraulic hoses to tractor remotes. See "Hydraulic Hose Hookup" on page 16

Hitching with Hydraulic Tongue (Option)

Refer to Figure 5 (showing bypass valve closed)

1. Move the tractor to near hitching position.

2. Connect the hydraulic hoses for the tongue circuit. This needs to be done before hitching in order to raise and lower the tongue. See "Hydraulic Hose Hookup" on page 16. Allow slack for hitch movements. Close the tongue cylinder bypass valve.

3. Make electrical connections for at least the planter monitor circuit (necessary to control planter hydraulic systems). See page 19.

4. Check that hitch local bypass valve ① is closed.

Refer to Figure 6

5. Set the cab CFM (Clutch Folding Module) Lift/Hitch switch ② to Hitch.

6. Retract the Hitch/Lift circuit to set the tongue height to clear the draw-bar. Back the tractor into alignment and pin the draw-bar.

Local Float on Hydraulic Tongue

Refer to Figure 5

The hydraulic tongue must be in Float during planter moves.

If it is necessary to move the planter without first connecting it to a tractor that has a float-capable circuit for the hydraulic tongue, open the bypass valve ① on the tongue cylinder. This provides local floating capability at the tongue.
Raising/Lowering Tongue
In addition to hitching, tongue raising and lowering is required during fold and unfold to engage and disengage the wing locks.

With the standard 3-point hitch, the planter tongue is raised and lowered by raising and lowering the 3-point.

With the optional hydraulic tongue, the planter tongue is raised by extending the hitch cylinder, and lowered by retracting the hitch cylinder.

Hitching with Either Hitch
1. Set the initial tongue height, using 3 point or cylinder of hydraulic tongue. Distance h, measured at top of tongue tube is:
 46 inches (117 cm) above ground level for YP12, or
 42 inches (107 cm) above ground level for YP16.
 Additional planter leveling information is found on page 131.

2. Connect other hydraulic hoses to tractor remotes. See “Hydraulic Hose Hookup” on page 16

Electrical Hookup
Refer to Figure 8
Your planter is equipped with two standard systems requiring separate electrical connections. You may also have optional equipment requiring additional connections.

Make sure tractor is shut down with accessory power off before making connections.

These connections may be made in any order. The key requirement is that all connections be made prior to planter movement.
1. Plug the planter light cable 1 to the tractor.
2. Connect monitor lead 2 to monitor harness. (See page 130 for console installation.)
3. Connect any optional harnesses.
Store Main Parking Stand

Refer to Figure 9

1. Remove the lower pin holding the parking stand. Swing the parking stand back and up until it is above the rear hole. Place the holding pin in the rear hole and allow the parking stand to rest on it. This will be the transport position for the parking stand.

2. Adjust the top link of a 3-point long enough so the ball swivel does not bottom out when fully raised.

3. Secure hoses using hose post loops (not shown) so that hoses have ample slack for lifts and turns, but cannot get caught in tongue lock or ball swivel. Failure to do so could cause hose to be crushed requiring hose replacement.

4. If equipped with hydraulic hitch option, connect safety chain to a suitable anchor point on the tractor.

Lock Up Fertilizer Drive

YP1225IR & YP1625IR

WARNING

Loss of Control and Sharp Object/Crushing Hazards:

Do not lift or lower wheel by spoke or rim; use handle only. Keep legs and feet out from under wheel. 90 pounds (41 kg) force is required to lift wheel. If you lose your grip before pinning, or after unpinning, the arm snaps down rapidly. The traction teeth and the force of the wheel impact can inflict serious injury.

The liquid fertilizer option uses a piston pump driven by a ground contact wheel. When not using the fertilizer drive, preserve the pump by locking up the ground wheel. On older models remove the chain.

✝ *Do not operate planter pump when not applying material.*

Refer to Figure 10

For YP1225IR and YP1625IR planters:

1. Remove clevis pin from storage hole ①.

2. Release the lock arm ②, lift handle ④ to lift ground wheel up to position it in-between lock arm.

3. Secure with pin clevis ③ and cotter pin.
Operating Instructions

This section covers general operating procedures. Experience, machine familiarity and the following information will lead to efficient operation and good working habits. Always operate farm machinery with safety in mind.

Pre-Start Checklist

1. Carefully read “Important Safety Information” on page 1.
2. Lubricate planter as indicated under “Lubrication” on page 98.
3. Check all tires for proper inflation. See “Tire Inflation Chart” on page 118.
4. Check all bolts, pins and fasteners. Torque as shown in “End of “Appendix A - Reference Information”.” on page 124.
5. Check planter for worn or damaged parts. Repair or replace parts before going to the field.
6. Check hydraulic hoses, fittings and cylinders for leaks. Repair or replace before going to the field.
7. Be sure hydraulic hoses are securely held out of the ball swivel area at hitch. Failure to do so could cause hoses to pinch requiring hose replacement.

Wing Lock Overview

Refer to Figure 11 and Figure 12

The YP1225IR & YP1625IR planters include four sets of locks for the frame and wings:

1. Transport hooks behind the wing pivots: These prevent the planter frame from fully lowering when folded. The planter frame is raised to allow the wings to clear the hooks. See page 22 and 28.
2. Wing locks at mid-tongue and inside wing casters: These prevent the planter from unfolding while in transport. The tongue (hitch) is raised to allow the hooks to clear the locks. See page 23 and 28.
3. Transport lock channels at wing caster cylinders: These lock channels prevent the frame from fully lowering during transport and maintenance. They are installed prior to folding, and removed after unfolding. See page 24 and 28.
4. Lift cylinder lock channels above frame pivots: These lock channels are only required during maintenance. However, if installed, they must be removed after unfolding. See page 24 and 83.

High Pressure Fluid Hazard:

Check all hydraulic lines and fittings before applying pressure. Escaping fluid under pressure can have sufficient pressure to penetrate the skin. Fluid escaping from a very small hole can be almost invisible. Use paper or cardboard, not body parts, and wear heavy gloves to check for suspected leaks. If an accident occurs, seek immediate medical attention from a physician familiar...
Unfolding The Planter

The distance between the tractor and the seed structure decreases by about 10 ft. (3 m) during unfolding. Planter, tractor, or both will move during this operation.

WARNING

Crushing, Pinch-Point and Overhead Hazards:
To prevent serious injury or death:

▲ Unfold only on hard level ground. Allow ample room.
▲ Allow no one on or near the planter during unfolding.
▲ Stay clear of the wing sweep arcs. The sweep arcs of the wings have numerous pinch and crush points in the mechanism. Coulters and row openers are sharp.
▲ Allow no one near planter during unfold. The seed structure usually moves forward during unfolding.
▲ Do not unfold with planter lowered.
▲ Unfold only with markers resting in transport cradles.
▲ Unfold only if hydraulics are bled free of air and fully charged with hydraulic oil.

Prepare Hitched Tractor and Planter

1. Move planter to level ground.
2. If tractor movement is not desired, put tractor in Park and/or set parking brakes, or telescoping movement of planter may cause tractor to move backward.
3. On the CFM (Clutch Folding Module), set the following switches to OFF (down):
 - MASTER switch
 - Fert.Pump

Prepare Transport Hooks

Refer to Figure 14

The transport hooks, behind/above wing pivots, prevent the frame from fully lowering when the planter is fully folded. To clear the hooks, the frame is fully raised.

Refer to Figure 13

4. Set CFM Lift/Hitch switch to “Lift” to enable lift cylinder hydraulics.
5. Set CFM Marker/Fold switch to “Fold” to enable fold cylinder hydraulics.
6. Activate lift hydraulics. Raise planter until lift hydraulics are fully raised. This raises the wing frames above the hooks.

NOTICE

Planter Damage Risk:
Be sure planter’s lift hydraulics are fully raised before unfolding or frame and/or hook damage WILL occur.
Release Wing Locks

Refer to Figure 16

A pair of inverted hooks on the tongue tube engage locks on each wing when the planter is folded.

Prior to unfolding, this lock system must be released by raising the tongue.

7. This step is slightly different depending on hitch type.

Release Wing Lock with 3-Point Hitch

a. Raise the 3-point hitch to disengage the wing lock. Continue at step 8.

Release Wing Lock with Hydraulic Hitch

Refer to Figure 15

a. Set CFM Lift/Hitch switch to Hitch.
 b. Raise hydraulic tongue to disengage wing lock.

Re-Phase Fold Cylinders

8. The fold system uses rephasing cylinders. It is necessary to rephase cylinders so wing gauge wheels run in their fully rotated positions in front of planter. To rephase fold cylinders:
 Move and hold lever for Marker/Fold in Fold direction (typically Extend) for 30 seconds. This causes wings to push against the tongue transport hooks.

Partially Unfold

Refer to Figure 16

9. Reverse fold circuit lever until wings clear transport hooks by a few feet.

Lower Tongue

10. Lower 3-point hitch or hydraulic tongue to planting position. See page 19 and page 131 for correct hitch height and depth control settings. If hydraulic tongue, set CFM Lift/Hitch switch to Lift.

Fully Unfold

Refer to Figure 17

11. Unfold the planter fully to planting position. Unfolding is complete when the large roller bushing on top of the tongue is engaged by the tongue safety latch.

NOTICE

Planter Damage Risk:

Failure to lower the tongue before unfolding WILL result in opener or seed delivery system damage. Press wheel assembly components can strike air system components near the air box manifold.
NOTICE

Planter Damage Risk:
Do not plant if the tongue latch is not fully down over the roller. Frame and opener damage is likely if the planter is operated with the latch open.

Remove and Store Transport Locks
The planter needs to still be in full lift to remove these locks.

Remove/Store Center Lift Locks
Refer to Figure 18

12. Remove lock channels ① from vertical cylinders above pivots.

Refer to Figure 18 and Figure 19

13. Store lock channels horizontally on tabs ② at top right side of lift cylinder weldment.
Remove/Store Caster Lift Locks

Refer to Figure 20

14. Remove transport lock channels from lift cylinders located on gauge wheels.

Refer to Figure 20 and Figure 21

15. Transfer lift cylinder transport lock channels to their storage positions ．

Unfold Closeout

16. As appropriate for the next planned activity, activate lift hydraulics and lower planter.

17. To disable fold hydraulics, and lock caster arms in field position, set CFM Marker/Fold switch to “Marker”.

Set switch to “Marker” even if Markers are not installed. This switch position disables all fold solenoid valves.

a. YP1125A s/n A1154K+ and YP1625A s/n A1172B+
Raising/Lowering Planter

The planter mainframe raises and lowers independently of the tongue.

- The planter may be fully raised at any time (and must be raised for folding).
- The planter may be lowered onto its transport lock channels at any time.
- The planter may be fully lowered, with lock channels removed, only when unfolded.

Refer to Figure 23

The CFM “CLUTCH” switch positions are not shown because they normally require no attention during lift or lower. Lifting the planter automatically disengages the entire drive system.

The “Fert.Pump” switch ① has no function on YP1225IR & YP1625IR planters as shipped by Great Plains because the optional fertilizer system for these planters uses a ground-drive pump that has no electrical control.

Leave or set the CFM Marker/Fold switch ② in “Marker” position to prevent unintended folding.

Raising Planter

The planter may be raised at any time.

1. Set the CFM “Lift/Hitch” switch ③ to Lift to enable the lift cylinder circuit.
2. Move the Lift/Hitch circuit lever to extend the lift cylinders.
3. Set the circuit to Neutral to hold the planter at lift. The CFM “Lift/Hitch” switch ③ may be left in the “Lift” position.
4. Install lock channels if raising for transport, parking, storage, adjustments or maintenance.

Lowering Planter

If lock channels are installed, the planter may be lowered at any time. If lock channels are not installed, lower only when unfolded, such as for field turns.

Install lock channels (page 25) as appropriate for next activity.

1. Set the CFM “Lift/Hitch” switch ③ to Lift to enable the lift cylinder circuit.
2. Move the Lift/Hitch circuit lever to retract the lift cylinders until settled on lock channels or fully lowered to ground.
3. Set the lift circuit to Neutral for field operation. The CFM “Lift/Hitch” switch ③ may be left in the “Lift” position.

Lowering Planter Hazard:

Use transport locks. A raised planter slowly lowers when held up solely by circuit neutral. Anyone beneath the row units could be trapped and injured. Rely on circuit neutral to hold the planter raised only for brief periods, such as field turns and during lock channel installation. Use lock channels at all other times.

After every few hours of operation (or earlier, if uneven lift is observed), re-phase the lift circuit. At a lift operation, hold the circuit in Extend for 30 seconds.

Crushing Hazard:

Keep all persons away from frame sections during lift and lower. Area under row units is particularly dangerous. Sharp coulter and opener blades descend with hundreds of pounds of down-force.

Unless lock channels are installed, lower the planter only when fully unfolded. Lowering when folded is prevented by the transport locks.
Re-phasing Lift System
Over a period of normal use the cylinders may get out of phase. This will cause some planter sections to run higher than others. If this is the case, it will be necessary to rephase lift cylinders.

- Lift cylinders can only be re-phased when planter is unfolded.

To re-phase cylinders:
1. Raise the implement completely and hold the hydraulic remote lever on for several seconds until all cylinders are fully extended. Do this every 8 to 10 times you raise planter out of ground.
2. When all cylinders are fully extended, momentarily reverse hydraulic remote lever to retract system ½ inch to maintain levelness.

Folding the Planter
The planter must be raised for folding. The tongue is raised and lowered during the sequence.

The distance between the tractor and the seed structure increases by about 10 feet (3 m) during folding. Planter, tractor, or both will move during this operation.

WARNING

Pinch Point and Crushing Hazard:
To prevent serious injury or death:

- **Fold only with planter raised and lock channels installed.**
- **Fold only if hydraulics are bled free of air and fully charged with hydraulic oil.**
- **Stay away from frame sections when they are being raised or lowered.**
- **Keep away and keep others away when folding or unfolding planter.**
- **Fold markers onto cradles before folding planter.**
Shut off Fan and Hydraulic Alternator
1. Set circuit levers for seed box fan and hydraulic alternator drive to Neutral.

Set Tractor and Tongue
2. Raise and move planter to a level area.
3. If tractor movement during folding is not desired, put tractor in Park and/or set parking brake.
4. This step is slightly different depending on hitch type:

Prepare 3-Point Hitch for Fold
a. Fully lower 3-point hitch. Continue at step 5.

Prepare Hydraulic Hitch for Fold
Refer to Figure 24
a. Set CFM Lift/Hitch switch 1 to “Hitch”.
b. Retract hitch cylinder to fully lower tongue.

Raise Planter
Refer to Figure 25
5. Set CFM Lift/Hitch switch 2 to “Lift”.
6. Activate circuit lever to extend lift cylinders until planter is fully raised.
7. Set circuit to Neutral to hold at lift.
8. On hydraulic hitch, return switch 2 to “Hitch”.
9. Put tractor in Park and/or set parking brake, and shut off tractor.

Install Lock Channels
Only wing (gauge wheel) lock cylinders need to be installed for transport. The center is adequately supported by the wing hooks and locks when folded.

For servicing, or to hold at lift when unfolded, also install center section lift locks (see page 83)

Refer to Figure 26
10. Remove lift cylinder transport lock channels from their storage positions.
11. Place transport lock channels on lift cylinders located on gauge wheels.

Equipment Damage Risk:
Tongue must be lowered at start of fold to ensure that press wheel assemblies remain clear of air system.
Activate Fold Solenoid Valves

Refer to Figure 27

12. Set CFM Marker/Fold switch ③ to “Fold”. This opens the solenoid valves for tongue lock, fold cylinders and caster arm® cylinders.

Begin Folding

13. Extend the fold cylinders and fold the planter until the wing tubes are within a few feet (a meter or so) of the tongue.

Raise Tongue

14. Raise 3-point hitch or hydraulic hitch until wing hooks ④ on tongue clear locks ⑤ on wings.

Complete Fold

15. Continue or resume folding until the wing locks contact lock plate (under hooks).
16. Set CFM Marker/Fold switch ③ to “Markers”.

When folded, set the “Marker/Fold” switch to “Marker”, whether Markers are installed or not. In this position, the switch disables all solenoid valves for fold, locking the fold system.

Lower Tongue

17. Lower 3-point hitch or hydraulic tongue until wing hooks rest on wing locks.

Re-phasing Fold System

Over a period of normal use, the cylinders may get out of phase. This is evident by wing gauge wheels not running in their fully rotated positions in front of the planter.

Planter must be folded to rephase fold system. See “Re-Phase Fold Cylinders” on page 23.

a. Feature on YP1225IR and YP1625IR planters.
Transporting

The tractor must weigh at least 2/3 (67%) of the planter plus any materials loaded. See table below for typical planter weights. Have your planter weighed if the tractor capability is not clearly above requirements.

Before transporting, follow and check these items:

- Set the tractor 3-point hitch control for depth control operation. If the 3-point hitch control is set for load control, the auto load control response may automatically adjust too high in some circumstances, causing the wing locks to disengage on the road.

- Empty seed box. Empty seed box before transporting if at all possible.

- The planter can be transported with a full box of grain, but the added weight increases stopping distance and decreases maneuverability.

- Transport planter only while in folded position. Refer to "Folding the Planter" on page 27 and make sure cylinder lock channels are in place.

- Warning lights. Always use warning lights when transporting the planter.

- Road rules. Comply with all national, regional, and local safety laws when traveling on public roads.

- Clearance. Remember that the planter is wider than the tractor. Allow safe clearance.

- Transporting with Markers. Always transport markers in the folded position. Make sure second marker section rests securely on transport carrier.

Weights of Representative Planter Configurations

<table>
<thead>
<tr>
<th>Note: the weight of a specific planter can vary significantly.</th>
<th>YP1225IR</th>
<th>YP1625IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Planter Weight</td>
<td>18420 lb</td>
<td>20160 lb</td>
</tr>
<tr>
<td>Typical Empty Standard* Planters</td>
<td>19280 lb</td>
<td>21030 lb</td>
</tr>
<tr>
<td>Typical Full Standard* Planters</td>
<td>24530 lb</td>
<td>26270 lb</td>
</tr>
<tr>
<td>Typical Empty Maximum* Planters</td>
<td>22050 lb</td>
<td>24270 lb</td>
</tr>
<tr>
<td>Typical Full Maximum* Planters</td>
<td>32100 lb</td>
<td>34320 lb</td>
</tr>
</tbody>
</table>

* Typical Standard configuration is: markers, 82 bushel hopper, no fertilizer, no coulters
* Typical Maximum configuration is: markers, 82 bushel hopper, starter fertilizer system, UM coulters

WARNING

Loss of Control Hazard:

Do not exceed 20 mph (32 km/h).

Use a tractor rated for the load.

Towing the planter at high speeds or with a vehicle that is not heavy enough could lead to loss of vehicle control, resulting in a serious road accident, injury and death.
Loading Materials

The YP1225IR & YP1625IR planters accept the Great Plains 82 bu. hopper, 150 bu. hopper, or bulk seed boxes that meet the Pioneer® PROBOX® specification.

Material Loading Overview

- With hoppers, seed is loaded from above, with the hopper already mounted on the planter.
- With a bulk seed box, seed is pre-loaded by the seed supplier, and the box is mounted on the planter already loaded.
- If the optional fertilizer system is installed, liquid fertilizer is normally pumped in from below via the quick-fill system, but may also be gravity-loaded from above with the tank caps removed.

⚠️ CAUTION ⚠️

Tipping and Overload Hazard:
Place or remove a hopper only when empty. A full hopper can weigh between 5000 and 10000 lbs (2700-4500 kg), which is above the lifting and balance capability of most tractors and farm forklifts.

Mounting a Hopper or Bulk Seed Box

These steps cover mounting a hopper or seed box on a planter that has no seed container. If a seed container needs to be removed first, see page 36.

1. Move the planter to an area of level ground and sufficient room to maneuver a tractor or fork-loader.
2. If changing between hopper and bulk seed box, use the Accessory Sensor Setup menu on the seed monitor console to disable the hopper sensor and avoid nuisance alarms. See DICKEY-john® Quick Start Guide.
3. Place tractor in park, shut off engine, and remove the key. If using the same tractor for container mounting, block the planter transport tires.

Refer to Figure 30

4. Remove the walkboard lock pin ①.

Refer to Figure 31

5. Swing walkboard ② all the way to the right.

a. The 150 bu. hopper is incompatible with on-board fertilizer tanks.
b. PROBOX® is a registered trademark of Pioneer Hi-Bred International, Inc.
Refer to Figure 32

If planter is lowered, walkboard will stay open by itself once fully opened. There is a keeper near the walkboard pivot that can hold the walkboard open in all conditions.

Refer to Figure 33

7. Remove pins ① at the corners of the airbox frame.

CAUTION

Irritation and Chronic Exposure Hazard:

Wear gloves. DO NOT use hands or any part of your body to mix seed lubricant. Wear a respirator when transferring and mixing. Avoid breathing lubricant dust. Not an acute hazard. May cause mechanical eye or skin irritation in high concentrations. As with all mineral spills, minimize dusting during clean-up. Prolonged inhalation may cause lung injury. Product can become slippery when wet.

8. When using a bulk seed box, new meters for the first time, or at the start of each season, measure out approximately 4 gallons (15 liters) of seed into a pail. Add $\frac{1}{2}$ cup (120 ml) of Ezee Glide Plus seed lubricant to the pail. Mix and pour into airbox before mounting hopper.

NOTICE

Flow Inconsistency and Stoppage Risk:

Ezee Glide Plus is mandatory for all seed, especially treated or inoculated seed. Failure to use this seed lubricant as recommended can cause inconsistent seed flow to meters, and clogging at meters. See “Seed Lubricants” on page 104.

On a new planter, the interior surfaces of the seed hoses are somewhat tacky until they are coated with seed lubricant. Before planting for the first time, and at the start of each season, add $\frac{1}{3}$ cup (80 ml) Ezee Glide Plus seed lubricant to bottom of airbox.

The monitor system includes a level sensor located below hopper to warn when box is empty. This typically provides three to four acres (1.2 to 1.6 ha) of run time before rows start going empty.

9. At the airbox seed inlet, inspect the seals for wear and damage.

10. If mounting a seed box, add Ezee Glide Plus to the seed box at this time. It may be easier to add it while the box is still at ground level.
CAUTION

Tipping and Overload Hazard:
Make sure your tractor or fork lift is rated for and configured to lift the hopper or bulk seed box. A full bulk seed box can weight over 2500 lbs. Do not let anyone stand under or in front of the elevated seed box.

Refer to Figure 34

11. Approach the hopper or seed box from the back (the side with the slide gate). Align the forks with the slots in the rear of the seed box or hopper and slowly drive forward until forks are completely under the seed box or hopper.

Bulk hopper frame has two sets of lifting points. One set is for normal loading and is tubes. The other set is to allow picking it up from the side for placing in storage near a wall.

It may be necessary to adjust the seal on top of air box to get full contact with the bottom of seed box or hoppers. This is a one-time adjustment.

Refer to Figure 35

12. Slowly lift the full seed box or empty hopper, and place it in the planter airbox frame.
13. Install the box retaining pins in frame corners.

Refer to Figure 36

14. Unless you are at the field to plant, close the slide gate ② at the base of the hopper.
15. Return the walkboard to the closed position and install the latching pin.
16. If installing an empty hopper for planting, load seed (and lubricant). Otherwise, skip to step 24 on page 35.
Loading Hopper with Seed

Refer to Figure 37

17. At the top of the hopper, release the lid latch(es). and open the lid(s).

18. Check that the strainer basket is clean and in place.

CAUTION

Do not operate without a strainer: It is an important safety feature that prevents accidental entry into the hopper. It also prevents larger foreign matter from clogging the air system.

19. Inspect the hopper itself to ensure that it contains only expected material.

Refer to Figure 38

If using an auger to load seed, access to the top of the hopper is eased by swinging down the top section of the center walkboard railing.

20. At each end of the swing-down section, pull the cross pins inward until the pins clear the holes. Swing the railing section in or out (it is easier to close if swung in).

Using Auxiliary Hydraulic Circuit

The optional auxiliary hydraulic kit includes a manual valve that diverts the marker hydraulic circuit to a pair of quick-connect ports at the back of the seed cart.

Refer to Figure 39

A. Extend or fold any marker that is raised. Return the cab control for that circuit to “off”.

B. Close any shut-off valve on your auger, and connect the auger to the auxiliary quick-connect ports at the back of the seed cart.

C. At the auxiliary selector valve (near marker sequence valve on left wing), move the handle from “Marker” to “Auxiliary”.

D. With no seed present, open the auger shutoff valve, and operate the cab control to determine which setting (“extend” or “retract”) turns the auger in the correct direction for seed lift.
E. Load seed. Shut off cab circuit, then auger. Return Aux valve control handle to “Marker” position.

F. Disconnect auger hydraulic hoses at Aux ports.

Refer to Figure 41 and Figure 42

21. Load seed. Cross-check the expected amount against the indicator marks molded into the side of the hopper. The figures at right show the approximate capacity by fill depth.

22. Connect optional hopper level sensor to monitor harness.

For planters equipped with optional 82 bu. or 150 bu. hoppers, an extra level sensor is included. Use Figure 41 or Figure 42, showing capacity, to place it at the level that suits your operation. The hopper sensor is in addition to the air box manifold level sensor.

23. Close and latch lid(s).

Seed Loading Close-Out

24. If at the planting field, open the slide gate.
Dismounting a Hopper or Seed Box

1. Move the planter to an area of level ground and sufficient room to maneuver a tractor or fork-loader.
2. Place tractor in park, shut off engine, and remove the key. If using the same tractor for container dismounting, block the planter transport tires.
3. Remove the walkboard lock pin (page 31).
4. Swing the walkboard completely open and secure with keeper (page 32).
5. For hoppers with optional level sensors, disconnect the sensor lead at the harness.

Refer to Figure 43

6. Remove pins at the corners of the airbox frame.
7. Close the slide gate at the base of the hopper or seed box.
8. Approach the hopper or seed box from the back.
9. Slowly lift the full seed box or empty hopper, and back it away from the planter airbox frame.
10. Return the walkboard to the closed position and install the latching pin.
11. If changing between hopper and bulk seed box, use the Accessory Sensor Setup menu on the seed monitor console to disable the hopper sensor and avoid nuisance alarms. See DICKEY-john® Quick Start Guide.
12. If not installing another seed container, cover the airbox inlet with plastic sheeting and secure with tape or bungees.

CAUTION

Tipping and Overload Hazard:
Verify that the hopper or box is empty, or calculate the weight. Use a tractor or fork lift rated and configured for the weight. A full seed box can weight over 2500 lbs. Do not attempt to dismount a full hopper. Do not let anyone stand under or in front of the elevated seed container.
Fertilizer Tanks (Option)

DANGER

Agricultural Chemical Hazards:
Observe safety precautions specified by material suppliers.
Some chemicals can cause serious burns, lung damage and death. Avoid contact with skin or eyes. Avoid prolonged breathing of chemical fumes. Wear respirator and other protective equipment as required by chemical manufacturer. Seek medical assistance immediately if accident occurs. Know what to do in case of an accident.

Filling Tanks

Refer to Figure 44

1. Connect nurse-tank hose to quick-fill coupler located behind the right-hand tank. Lock hose in place with cam-lock levers.
2. Close valve going to the in-line filter located just before the pump.
3. Open valves at each tank and at quick-fill coupler.
4. Fill tanks, then close valve at quick-fill coupler, and disconnect the nurse tank hose.

Always close valve at filter when filling or storing any liquid in tanks. Failure to do so may allow material to run out of manifold (boom) outlets causing contamination from spillage.

Always fill fertilizer tanks to equal levels. If one tank fills more quickly, shut that tank valve off to raise the level in the other tank.

Ground Drive Pump

This liquid fertilizer option uses a ground drive positive displacement pump. For pump operation and pump maintenance, refer to the pump manual, supplied in the liquid fertilizer option package. For fertilizer settings, see the Seed Rate manual.

Hydraulic Pump Fertilizer System

This option uses a centrifugal pump driven by a hydraulic motor under seed monitor control.

NOTICE

Stratification and Plugging Risk:
Apply fertilizer soon after material loading. Clean out unused materials promptly. Fertilizer allowed to remain in the tanks for an extended period can settle, resulting in excessive and insufficient concentrations during application. System plugging can also occur.

Field Setup Checklist

Use the following checklist as a guide to ensure the planter is properly setup before using.

To complete checklists, you may need to refer to the:
SRM: Seed Rate Manual (SRM) 411-242B,
PDC: DICKEY-john® Planter/Drill Control manuals
ELECTRICAL
- All connections made 19
- Check all lights 19
- Power up monitor. Watch for diagnostics. PDC
- Verify Material, Rate and “SPLIT AIR” Channel setup. Verify Channel setup for IRC drive. PDC

HYDRAULIC
- Tractor reservoir full 43
- Marker/Aux valve to Marker (Option) 16
- All hydraulic circuits connected 41
- Fan direction and rpm 19
- Raise tongue. Lift planter 22
- Begin unfold 22
- Re-phase fold system 23
- Lower tongue 23
- Unfold wings. Check for tongue lock. 23
- Re-phase lift cylinders 27
- Check marker operation 43
- Inspect for hydraulic leaks 2

MECHANICAL
- Tongue height preset on 3-point 19
- Set tractor 3-point hitch to "depth control" operation (and not load control) 44
- Side to side levelness at gauge wheels 131
- Toe-in of wing frames at pull-bars 132
- Tongue hook latch operation 23
- Marker extension and disk angle set 133

AIR SYSTEM
- Manifold to PROBOX® or poly hopper seal. 32
- Y-splitters turned off for unused rows. 68
- Blank disks installed at unused rows. 69
- Air leaks (small leaks from PROBOX® are normal) 79
- Hose routings, no sags and no pinched hoses. (Check folded and field positions.) 64
- Hoses fully connected to meters and locked. 70
- Start fan. Turn on seed monitor active air control. Watch for split air vane movement or air pressure changes. 41
- Activate the “FILL METER” function of the monitor. Watch for air vane movement, or watch meter pressurization go to zero. PDC
- On a new planter, pre-lubricate the air system with Ezee Glide Plus. 32

FERTILIZER
- Set rate drive sprockets for correct rate. SRM
- Check for correct orifice plates. SRM
- Check unused rows are correctly closed off. SRM
- Fill system 1/2 full with water and check for leaks (run pump if possible). SRM
- Disconnect drive chain if fertilizer is not used. SRM
- Check all row unit lines are connected and discharge nozzles or tubes are clear. SRM

ROW CLEANERS
- Check for correct installation of row cleaners on all rows if equipped. PDC
- Check that row cleaners do not catch on hydraulic hoses. PDC
- Carefully watch when folding and unfolding planter the first time to ensure clearance of row cleaners. PDC

ROW UNITS
- Preset depth handles to 7 holes showing above “T” 62
- Preset down force springs to 1st notch (lightest) setting for most conditions, 2nd notch otherwise. 58
- Set all unit mounted coulters to 1/4 in. (6 mm) above opener blade depth. 61
- Check coulter alignment to row. 73
- Check closing wheel alignment. 73
- Set closing wheels to first notch (light). 64
- Check scraper gaps (option). 64
- Lock up splitter rows if needed. 70
- Check action and contact of side depth wheels. 63

SEED METERS
- Ezee Glide Plus in seed. 32
- Correct seed disks installed for crop, seed size and cell count (and blank disks in unused rows) 67
- Inlet shutter set to chart value 66
Monitor Operation

For monitor operation in the field, refer to the DICKEY-john® Planter/Drill Control manuals supplied with this unit, and the Seed Rate manual.

The DICKEY-john® Planter/Drill Control manuals are User Level 2/3, which correspond to access levels in the monitor menus.

User Level 2 is password-protected, and includes planter configuration settings, and some other setup items.

User Level 3 is for dealer and Great Plains use only.

Air System Operation

![Diagram of Air System Elements]

Figure 45
Yield-Pro® Air System for Air-Pro® Seed Metering

<table>
<thead>
<tr>
<th>Meter Pressurization System Elements</th>
<th>Shows Air Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydraulic Fan</td>
<td>7 Pressure Sensor Lines</td>
</tr>
<tr>
<td>2 Split-Air Manifold</td>
<td>8 Pressure Sensor Chamber</td>
</tr>
<tr>
<td>3 Servo-Controlled Vane</td>
<td>9 Feedback Signal Line</td>
</tr>
</tbody>
</table>
Air System Overview

The hydraulic fan supplies air for both seed delivery and meter operation. Fan rpm is operator-adjusted via the tractor’s hydraulic flow control, and reported by the seed monitor system. The rest of the system is fully automatic.

At the split air manifold, a rotary actuator operates a vane, under the control of software in the WSMT, which regulates the air diverted to the meter pressurization system.

Air not used for metering (typically just under half of it) flows to the air box for bulk seed delivery. Air pressure in the seed delivery system is not presently reported. The meter pressurization air has priority, and can take all the air.

Several rows have lines to sample metering air pressure, which is measured in a sensor chamber. The sensor reading is fed back to the WSMT for closed-loop pressure control. No operator adjustment is required for the metering air system.

At the air box, air is mixed with seed from the bulk hopper or PROBOX®, and flows out air box manifold ports into primary seed hoses to the rows. Y-tubes (not shown) may split primary hoses into secondary hoses to rows.

An air release screen above each Air-Pro meter vents the delivery air. The vent has two functions:

1. It releases delivery air while retaining the delivered seeds.
2. It is a passive control gate for bulk seed delivery.

It takes about a minute to initially fill the meters.

Separate pressurization tubes provide the air to the meters that holds the seed in disk cells until released to the seed tubes.

A detector in each seed tube reports seed passage to the seed monitor system, which reports counts and rates on the console.
Fan Circuit Operation

See also “Fan and Meter Pressurization Adjustment” on page 48.

Refer to Figure 46

Three hydraulic hoses serve the fan, and must be properly connected for the fan to operate in the correct direction, at recommended speeds, and without damage. See “Hydraulic Hose Hookup” on page 16.

1. Always connect the case drain line first.

 This line protects the outer shaft seal of the hydraulic motor. The case drain is a small line to the hitch, provisioned with a specialized low-seep flat-face case drain Quick Disconnect. Pressure spikes during motor operation, and pressure cycles due to temperature change are bled off by the case drain.

 NOTICE

 Motor Seal Damage Hazard:
 Do not apply pressure to the case drain line. Do not change the special QD connector. A restricted or sealed case drain line will promptly result in motor seal damage.

2. Connect the motor return line second, to sump.

 The planter includes a 1 1/16 inch low back-pressure QD coupler set. Install the receptacle on a tractor sump port, and not at a normal remote return port. The unusual size aids in ensuring correct connection, so that the motor return line handles high volume at low back-pressure, ensuring full motor performance.

3. Connect the motor inlet line to a tractor remote capable of the flow rates shown at “Recommended Initial Fan Speeds” on page 42.

4. The fan hydraulic circuit includes a check valve, which provides a relief path for oil at motor shutoff. The resulting low fan rpm provides strong indication reversed connection.

 Correct fan direction is shown at Figure 46. If reversed fan is suspected, observe it during shutoff, as the direction of motion is easier to see at lower rpms as it slows to a stop (initial startup is virtually instantaneous, making observation at start difficult).

 If the fan is connected in reverse, it may not run at all (due to no oil source at the return connection). If oil is present, oil bypass at the check valve prevents the fan from reaching operating rpms. A reversed fan is incapable of providing sufficient air flow for planting.

 Fan speed is controlled by the tractor circuit (and not the seed monitor). Fan rpm is reported by the seed monitor console.
Table of Contents

YP1225IR & YP1625IR Table of Contents

Index

Recommended Initial Fan Speeds

<table>
<thead>
<tr>
<th></th>
<th>YP1625IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Seed Hopper*</td>
<td>2700 rpm</td>
</tr>
<tr>
<td>PROBOX</td>
<td>2500 rpm</td>
</tr>
</tbody>
</table>

*This assumes a 2007+ Great Plains hopper, or older hopper with the vent line update. For an older unvented hopper, use the rpms recommended for ProBox.

At operating speeds, typical oil flows are in the range:

Electric Drive Planters:
14-16 gpm (53-61 lpm) for YP1625IR

The figures above do not include oil for lift/lower or the marker operation.

NOTICE

Low Population Risk at Turns:
The figures above do not include oil for lift/lower or oil for marker operation. Aggressive lift/lower operations, and simultaneous lift/marker operations, can reduce fan rpm below that needed to pressurize meter disks. If seed falls out of pockets, low population bands will occur shortly after turns.

Unless the tractor has generous oil flow capacity, raise/fold markers before lift, and lift slowly. Watch manifold pressure and tune operations to keep it at planting levels in turns.

Fan General Operating Information

Use tractor remote hydraulic valve flow control to set fan speed. Always start the fan with a low flow setting.

Monitor fan rpm with the seed monitor.

Gradually bring fan up to the recommended initial rpm. The split-air servo vane engages only above 50 rpm.

Do not run the fan over 3100 rpm (on model YP1225IR), over 3500 rpm (on model YP1625IR) or speeds under 2000 rpm.

At excessive rpm, too much air flow can cause:
- seed to plug the air box
- seed suspension in a bulk seed box
- unstable split air control
- oil heating
- slow lift times

If the rpm is too low, the split-air system may divert nearly all the air to the meter pressurization, leaving none for seed transport (or just enough to plug low spots in seed hoses).

The monitor console can report meter pressurization. There is also a Magnehelic® air pressure gauge. These two readings should not disagree by more than a few tenths of an inch.

The Seed Rate manual provides initial values for meter pressurization. Normal readings are in the 0.8 inches to 4.0 inches H2O range, and vary considerably with crop.

If at suggested fan rpm, desired pressure cannot be reached, chances are the fan is running backwards. If the rpm and meter pressurization readings are correct, but the meters are starved of seed, the fan may be running backwards and the meter pressurization system is taking all the air, leaving little or none for seed delivery. Reverse the inlet/return lines at the hitch.

If air system does not operate suitably with fan speeds between 2000 and 3500 rpm, **“Seed Delivery Troubleshooting”** on page 79.

During “FILL METER”, all air is routed to the air box, and none to the meter pressurization system.

Steps for setting and adjusting the air system are found at **“Fan and Meter Pressurization Adjustment”** on page 48.
Marker Operation

DANGER

Electrocution Hazard:
Check for overhead lines before operating markers. If a marker contacts an electrical line, all metal parts of the planter and tractor can have lethal voltages present. There may be no indication of this condition until a person completes the circuit to ground. At higher voltages, electrocution can occur without direct contact.

Before operating markers, make sure they are properly bled as described in “Bleeding Hydraulics” on page 93.

For markers to operate, the marker hydraulic circuit must be enabled:

Refer to Figure 47
1. On the CFM switch panel, set the “Marker/Fold” switch 🔄 to Marker. Leave this switch in “Marker” position for all field operations. It also acts to lock the folding system when in “Marker”.

Refer to Figure 48
2. If the planter is equipped with an auxiliary hydraulic system, set the selector valve 🔄 (found near the sequence valve 🔄 at the marker base on the left wing) to “Marker”.

Dual markers are equipped with a sequence valve 🔄 to control lift sequence. Starting with both markers up, the sequence is:
1. Activate tractor hydraulic lever; right marker lowers while left marker stays up.
2. Reverse hydraulic lever; right marker raises while left marker stays up.
3. Activate hydraulic lever; left marker lowers while right marker stays up.
4. Reverse hydraulic lever; left marker raises while right marker stays up.
5. Pattern repeats.

Folding speed of dual markers is adjusted with adjustment screws on sequence valve body. Because excessive folding speed may damage markers, adjust markers to a safe folding speed according to “Marker Adjustments” on page 52.

To get both markers in the lowered position at the same time, activate hydraulic lever to lower one marker. After marker is lowered, move lever to opposite position then quickly reverse lever and hold until other marker is lowered.

Field Operation

Perform all steps in “Pre-Start Checklist” on page 21 and “Field Setup Checklist” on page 37.
Use Depth Control mode. If tractor 3-point hitch control is set for Load Control, hitch movement may cause changes in row unit depth resulting in uneven depth control.

<table>
<thead>
<tr>
<th>First Pass Operation Checklist</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set planting rate on monitor.</td>
<td>43</td>
</tr>
<tr>
<td>2. Unfold marker on next-row side.</td>
<td>41</td>
</tr>
<tr>
<td>3. With tractor at high idle, set fan hydraulic circuit to low flow, engage circuit. Gradually adjust fan hydraulic flow to obtain recommended rpm.</td>
<td>41</td>
</tr>
<tr>
<td>4. Set or verify meter pressurization value.</td>
<td>SRM</td>
</tr>
<tr>
<td>5. Engage optional hydraulic IRC alternator via seed monitor.</td>
<td>PDC</td>
</tr>
<tr>
<td>6. In the CLUTCH cluster of the CFM, set all switches, including Master, to ON.</td>
<td>26</td>
</tr>
<tr>
<td>7. Pull forward, lower planter, and begin planting for a short distance.</td>
<td></td>
</tr>
<tr>
<td>8. Stop. Assess: planting depth, skips or doubles (see sidebar and page 48), seed spacing (to verify population), press wheel operation and fertilizer application (if in use)</td>
<td>47</td>
</tr>
<tr>
<td>9. Continue planting for at least 10 seconds (so that the seed monitor is reporting a stable population number). Verify that it is your desired rate.</td>
<td>47</td>
</tr>
<tr>
<td>10. Make necessary adjustments</td>
<td>47</td>
</tr>
</tbody>
</table>

Figure 49
CFM: Planting Configuration

Skip and Double Checks

A. Dig up seed (or plant shallow with press wheel tied up). Check seed spacing against charts.

B. With meters still charged with air, carefully inspect disks at several rows.

Inspect the arc from just after the top tuft brush to the bottom edge of the seed drop brush. Look for cells (seed pockets) having no seed, or more than one seed. You may need a flashlight to perform this inspection.

<table>
<thead>
<tr>
<th>Sharp Field Turns Checklist</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fold marker</td>
<td>43</td>
</tr>
<tr>
<td>2. Raise planter</td>
<td>26</td>
</tr>
<tr>
<td>3. Make turn</td>
<td></td>
</tr>
<tr>
<td>4. Lower planter</td>
<td>26</td>
</tr>
<tr>
<td>5. Unfold marker on next-row side.</td>
<td>43</td>
</tr>
<tr>
<td>6. Resume planting.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suspending Planting Checklist</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stop tractor</td>
<td>43</td>
</tr>
<tr>
<td>2. Fan hydraulic circuit to Float or Neutral</td>
<td>41</td>
</tr>
<tr>
<td>3. Fold Marker</td>
<td>43</td>
</tr>
<tr>
<td>4. Raise planter</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ending Planting Checklist</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Suspend operations as above, then</td>
<td>27</td>
</tr>
<tr>
<td>2. Fold planter</td>
<td></td>
</tr>
<tr>
<td>3. Install transport locks</td>
<td>28</td>
</tr>
<tr>
<td>4. Lights ON</td>
<td>-</td>
</tr>
<tr>
<td>5. Transport</td>
<td>30</td>
</tr>
</tbody>
</table>
Parking
For information on long-term storage, see “Storage” on page 46.
1. If equipped with fertilizer, flush system and secure pump against corrosion.
2. Fold planter. see “Folding the Planter” on page 27.
 Be sure to install cylinder lockup channels. Failure to do so may result in injury and/or damage to the planter.
3. Park planter on a level, solid area.
4. To prevent rolling, block tires securely.

⚠️ DANGER
Roll-Away Hazard:
DO NOT unhitch planter while on a steep slope. Always block tires when unhitching from tractor. There is not enough weight on parking stand(s) to anchor planter on a slope.

Refer to Figure 50

3 Point Hitch
5. Remove pin 1 holding main parking stand 2 in “UP” position. Swing stand down. Pin stand in parking position. If the ground is soft, place a board or plate under the stand.
6. Remove wire snap lock pin 3 from innermost hole on park stand mount, or remove both pins if stand 4 was inverted. Swing support stand from underneath crossbar weldment, or invert to foot down.
7. Secure 3-point prop stands by using two pins on each stand.
8. Lower tractor 3-point until planter is resting on parking stand.

Hydraulic Tongue Hitch
9. Remove pin 1 holding main parking stand 2 in “UP” position. Swing stand down. Pin stand in parking position. If the ground is soft, place a board or plate under the stand.
10. Use tongue cylinder to lift planter high enough to fully swing down parking stand. Insert locking pin in parking stand.
11. Use tongue cylinder to lower planter onto parking stand. Pin parking stand.
12. Use tongue cylinder to lift tongue off tractor draw bar.

Either Hitch
13. Set all implement hydraulic circuits to Float to relieve pressure in lines.
14. Shut down hydraulics. Unplug hydraulic lines from tractor. Do not allow hose ends to rest on the ground.
15. Unplug planter light cable from tractor.
16. Unplug monitor harness from console.
17. 3-point: Unhook tractor from planter hitch.
18. Pull tractor away.
Storage
Store the planter where children do not play. If possible, store the planter inside for longer life.

1. Empty hopper (page 85).
2. Close the seed box or hopper door (page 85). Clean out the air system (page 85).
3. Remove hopper or seed box (page 36).
4. Cover and seal off the opening at the top of the air box. Leave clean-out door slightly ajar to allow any condensed moisture to drain off.
5. Remove seed disks from meters (this is primarily to relieve pressure on brushes). Clean disks of residue build-up (see Caution at right). Use mild soap, non-abrasive scrubbers, and hot or warm water. If using sealed storage, dry disks prior to storage.
6. Close seed inlet shutters at meters (to prevent pest entry to seed hoses). Thoroughly clean seed and seed treatment residue from seed meters. See “Meter Clean-Out” on page 87, for more information.
7. If your planter is equipped with an optional fertilizer tank, clean tank and application hoses. Be sure to follow chemical manufacturer’s instructions when handling chemicals.
8. Thoroughly clean pump following instructions in the pump manual.
9. Unscrew caps on end of fertilizer booms and flush them out. Drain completely and replace caps.
10. Remove any dirt and debris that can hold moisture and cause corrosion.
11. Lubricate and adjust all roller chains for ground drive fertilizer.
12. Smear grease on exposed cylinder rods to prevent rust. Add a brightly-colored tag at the hitch as a reminder to de-grease the rods prior to next use (to avoid any risk that congealed grease might damage seals).
13. See “Lubrication” on page 98, for lubrication information.
14. Inspect planter for worn or damaged parts. Make repairs and service during off season.
15. Use spray paint to cover scratches, chips, and worn areas on the planter to protect the metal.
16. Cover planter with a tarp if stored outside.

- Removing the seed box/hopper increases the life of the air box seals, which are otherwise apt to be permanently compressed if stored under load off-season.
- Do not store optional bulk hopper outside on the ground. Raise it on blocks, securing it in place to prevent from falling over or blowing around by wind. Store inside if possible.

Possible Chemical Hazard:
Seed disks will have talc and graphite residue, and may have residues of hazardous seed treatments. Do not wash disks where food is prepared, or where cookware or dinnerware is washed. Wear gloves when washing disks. Avoid spray. Although the disks are dishwasher-safe, do not wash them in an appliance also used for food cookware or dinnerware.

Storage: Fertilizer Option
The pump, strainer and manifold system require special attention prior to storage. See “Fertilizer System Maintenance” on page 96.
Adjustments

To get full performance from your Planter, you need an understanding of all component operations, and many provide adjustments for optimal field results. Some of these are covered earlier in this manual.

Even if your planting conditions rarely change, some items need periodic adjustment due to normal wear.

<table>
<thead>
<tr>
<th>Adjustment</th>
<th>Page</th>
<th>The Adjustment Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tongue Height</td>
<td>19</td>
<td>Correct draft load to tractor</td>
</tr>
<tr>
<td>Frame Leveling</td>
<td>131</td>
<td>Planting consistency</td>
</tr>
<tr>
<td>Wing Alignment</td>
<td>132</td>
<td>Correct and consistent row tracking</td>
</tr>
<tr>
<td>Clutch Lock-Up</td>
<td>26</td>
<td>Temporary operation with a failed clutch</td>
</tr>
<tr>
<td>Air System</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Fan Speed</td>
<td>42</td>
<td>Optimal seed distribution</td>
</tr>
<tr>
<td>Meter Pressurization (values from SRMa)</td>
<td>48</td>
<td>Consistent seed flow and disk singulation</td>
</tr>
<tr>
<td>Marker Adjustments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marker Extension</td>
<td>133</td>
<td>Swath alignment</td>
</tr>
<tr>
<td>Disk Angle and Orientation</td>
<td>53</td>
<td>Visibility of mark</td>
</tr>
<tr>
<td>Marker Speed Adjustment</td>
<td>53</td>
<td>Reliable marker operation</td>
</tr>
<tr>
<td>Height Switch Adjustment</td>
<td>54</td>
<td>Correct off/on state of meter drive</td>
</tr>
<tr>
<td>Fertilizer Adjustments (Option)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizer Rate</td>
<td>52</td>
<td>Refer to Planter Seed Rate manual</td>
</tr>
<tr>
<td>Fertilizer Relief Valve</td>
<td>SRMa</td>
<td>Refer to Planter Seed Rate manual</td>
</tr>
<tr>
<td>Fertilizer Orifice Selection</td>
<td>SRMa</td>
<td>Refer to Planter Seed Rate manual</td>
</tr>
<tr>
<td>Frame-Mounted Row Accessories (Options)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terra-Tine Row Cleaners</td>
<td>55</td>
<td>Row preparation</td>
</tr>
<tr>
<td>Coulters</td>
<td>56</td>
<td>Row pre-furrow depth and trash cutting</td>
</tr>
<tr>
<td>Vantage I Fertilizer Delivery</td>
<td>56</td>
<td>Fertilizer placement</td>
</tr>
<tr>
<td>25 Series Row Unit Adjustments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row Unit Down Pressure</td>
<td>58</td>
<td>Planting depth uniformity</td>
</tr>
<tr>
<td>Row Unit Lock-Up</td>
<td>68</td>
<td>Single/twin-row operation</td>
</tr>
<tr>
<td>Row Cleaner Adjustments (Option)</td>
<td>60</td>
<td>Row preparation</td>
</tr>
<tr>
<td>Coulter Adjustments (Option)</td>
<td>61</td>
<td>Row pre-furrow depth</td>
</tr>
<tr>
<td>Row-Unit Opener Adjustments</td>
<td>62</td>
<td>Seed depth, spacing, coverage</td>
</tr>
<tr>
<td>Side Depth Wheels</td>
<td>63</td>
<td>Seed depth</td>
</tr>
<tr>
<td>Adjusting Gauge Wheel Scrapers</td>
<td>64</td>
<td>Consistent seed furrow depth</td>
</tr>
<tr>
<td>Seed Meter Setup and Adjustment</td>
<td>65</td>
<td>Consistent seed population</td>
</tr>
<tr>
<td>Seed Firmer Adjustments (Option)</td>
<td>71</td>
<td>Seed-soil contact</td>
</tr>
<tr>
<td>Press Wheel Adjustment</td>
<td>73</td>
<td>Effective soil coverage</td>
</tr>
<tr>
<td>Monitor Adjustments</td>
<td></td>
<td>Refer to Seed Monitor manual</td>
</tr>
</tbody>
</table>

a. SRM: Seed Rate Manual (411-242B)
Fan and Meter Pressurization Adjustment

1. These steps presume that correct seed disks are installed (Seed Rate Charts), and the seed inlet shutters are set for the seed (page 65).

2. With fan off, check meter pressurization reported by seed monitor. Re-zero as needed (see Seed Monitor manual).

3. Determine recommended fan rpm based on your own notes in the Seed Rate Charts, or the table on page 42.

4. Determine the recommended meter pressurization based on your own notes or the published value in the Seed Rate Charts.

5. Start the fan. Gradually increase fan rpm using the tractor’s hydraulic flow control for the circuit. Adjust to the developed or suggested value from step 3.

6. Check that at least a small amount of pressure is being sensed at the meters and meter pressurization is near suggested value.

7. Perform a “FILL METER” operation for at least one minute (see DICKEY-john® Planter/Drill Control user level 1 manual).

8. Check for meter fill:
 With fan running, put the tractor in Park and set the brakes. Walk behind the wings, remove several rain covers, and check for seed in meters by looking through the clear disks. Rows to check are those with longer hoses or sharper hose bends.

9. Fill the disk pockets with seed:

 Electric Drive: Run a “FILL DISK” operation.

10. Check control air system pressure. With meters and disks filled, meter pressurization should be at target value.

12. During the first pass, take note of the average populations reported on the seed monitor.
 Typical Location: Item:
 Screen 1, first row above graphs Average Overall Population

 If the reported population varies from your intentions by a significant amount, it is imperative to perform a furrow check. For serious rate variances, for which the source of the problem and the solution are not quickly determined, see “Population Troubleshooting Charts” on page 76.

 If population is only slightly low, the problem can be skips (periodic empty disk pockets). If slightly high, the problem can be doubles (periodic pockets with double seed). A meter pressurization adjustment may correct either condition (see step 14).

 Small seeds, such as Milo, may be under-reported. Use the “Alternate Skip/Double Check” below to verify seed status at the disc pockets.

 If a meter runs completely out of seed (“starved”), back-pressure to the air box manifold may prevent prompt refill. To fill a starved meter, close the seed inlet shutter for about 15 seconds, then restore it to the original setting.

 Furrow Check:
 Expose several seeds in each of several rows, being careful not to disturb their relative positions. Measure and average the distance between seeds. Compare this to the predicted seed spacing for the population in the Seed Rate manual.

 Any instances of no seed where expected may be a sign of “skips”. Finding two seeds at the same spot is clear indication of “doubles”
13. Resume planting. During the next pass, note the following two readouts on the seed monitor:

Typical Location: Item:
Screen 1, 2nd row above graphs Minimum Row Population
Screen 1, 3rd row above graphs Maximum Row Population

A small varying population deviation between rows is normal; however, if a row is consistently running lower or higher than the other rows, it could indicate a meter or seed sensor problem that needs attention. “Population Troubleshooting Charts” on page 76.

14. Skips:
If all else is correct, and the overall average population is running low (or there are gaps upon furrow check), the cause may be seeds falling out of disk pockets before delivery to the seed tube. Increase meter pressurization to correct this. You can adjust this with the planter in motion.

Press the “SPLIT AIR +” softkey on the seed monitor console. Wait 5 to 10 seconds for the system to update, while you continue planting. Continue making small increase adjustments until the reported population levels out at the target value.

Insufficient meter pressurization, or unusually rough fields, can increase the incidence of empty pockets. Be sure to rule out other causes (meter starvation, incorrect meter disks) before adjusting meter pressurization to reduce apparent skips.

The suggested increment of change is two presses of the “SPLIT AIR” softkey, at the factory default value for change increments.

15. Doubles:
If all else is correct, and the overall average population is running high (or there are double seeds upon furrow check), the cause may be two seeds in some disk pockets at delivery to the seed tube. Decrease meter pressurization to correct this. You can adjust this with the planter in motion.

Press the “SPLIT AIR -” softkey on the seed monitor console. Wait 5 to 10 seconds for the system to update, while you continue planting. Continue making small decrease adjustments until the reported population levels out at the target value.

Excess meter pressurization can increase the incidence of doubles. Be sure to rule out other causes (such as incorrect meter disks) before adjusting meter pressurization to reduce doubles.
Fine-Tuning Meter Pressurization

After several passes, if you are comfortable with the planter's operation, you can optimize meter pressurization. Do this during longer passes, so there are fewer distractions (and see sidebar regarding Milo).

16. Observe the current overall average population reported by the monitor.

17. Adjust the meter pressurization down, in discrete steps, waiting 5-10 seconds between adjustments, until skips occur (population begins falling below target). Note the pressure at which skips begin.

18. Restore pressure to the initial value at step 16.

19. Adjust the meter pressurization up, by periodic small increments, until doubles occur (actual population begins rising above target). Note the pressure at which doubles begin.

If unable to adjust up to doubles (or skips happen instead), seed delivery is probably being starved of air. Increase fan rpm and repeat limit search.

20. Adjust meter pressurization to a value halfway between the limits established at step 17 and step 19. This is the ideal value for your crop, disk and population, providing equal margin against skips and doubles. Record this value for future use.

Alternate Skip/Double Check

Small seeds, particularly Milo, are less reliably sensed as skips or doubles by the seed tube sensors, and watching monitor population is unlikely to locate the pressure limits. This test can also be quicker for all seeds.

A. After planting a few passes with initial settings, remove the rain covers from several rows (use rows with a variety of seed hose lengths and routes).

B. Make a meter pressurization adjustment. Resume planting for a pass or less.

C. Stop planter motion but leave fan running.

D. Inspect the seed disks closely. Look for empty seed cells (skips) and cells with multiple seeds (doubles).

E. Repeat step B-step D until limits are established. Record limits. Reinstall rain covers. Plant with median settings.

Checking Planting Rate

Cautious practice includes checking seed delivery rate prior to planting.

Although the seed monitor can count most singulated seeds, it may not reliably count the smallest (such as Milo), it does not count individual volumetric seeds, and several factors can cause even large seed singulated reports to be inaccurate (such as incorrect speed calibration, Sensor Constant or Gear Ratio setup).

Methods of rate checking are described in detail in the Seed Rate Manual. The information on this page is an overview of the general process, which varies with the seed type and the planter meter drive type.

Before checking rate, make sure that the seed monitor is configured with an accurate Ground Speed Constant. As delivered, the monitor may have an inappropriate value pre-loaded.

The DICKEY-john® Quick Start Guide for your planter includes an initial value for this constant, but this value may not be optimal for your planter, and does not include any adjustment for tire wear over time.

For reliable monitor reports, at the start of each season, perform a “GROUND SPEED CALIBRATION” over a 400 foot/120 m course, as described in the DICKEY-john® IntelliAg® Planter/Drill Control Operator’s Manual. When completed and entered in the monitor, cross-check the reported implement speed against the tractor speedometer or other reference.
Checking Singulated Rate

A furrow check is the most accurate way to verify that you are seeding at your desired population value. This is done by planting for a short distance with one or two rows set to shallow depth and with press wheels tied up for no furrow closure. Seeds are counted in the furrow over a specific distance and the area rate is computed. Refer to the Seed Rate Manual for details.

The seed monitor will also be counting during the test, and comparing results provides confidence in the seed monitor display.

If the checked rate varies materially from the chart rate, or for hydraulic drive, from the programmed rate, it is likely that there is a seed flow problem or planter malfunction (such as contact drive tire slippage) or a configuration error that requires correction. Do not “calibrate” to correct unexpected variations in singulated rates.
Setting Fertilizer Rate

This page is an overview. For details on fertilizer rate setting, refer to the Seed Rate Manual, 411-242B.

DANGER

Possible Chemical Hazard:
Wear proper protective equipment as required by chemical manufacturer. Avoid breathing of chemical fumes. Wear respirator as required by chemical manufacturer. Seek medical assistance immediately if accident occurs. Some chemicals cause serious burns, lung damage, and death. Avoid contact with skin or eyes. Know what to do in case of an accident.

Fertilizer rate is controlled by pump rate (for the Great Plains ground drive pump). Consistent delivery across the planter is controlled by orifice size at row unit drop-line points.

Consistent system operation also requires a correctly adjust relief valve and a well-maintained strainer ahead of the pump. See “Important Safety Information” on page 1 and “Important Safety Information” on page 1.

Piston Pump
The liquid fertilizer option uses a piston pump. For pump operation and pump maintenance refer to the pump manual, supplied in the liquid fertilizer option package.

The pump is driven by a ground contact wheel (①), and fertilizer rate is independent of seed rate. Coarse fertilizer rate is set by a sprocket (②) on the ground drive assembly. Fine rate is set by a dial (③) on the pump. For settings, see the Seed Rate manual.

Great Plains recommends checking with your local Agronomist, as soil conditions vary. Conditions in your area may need lesser or more amounts of fertilizer than represented in these charts. Do not exceed 12 gallons per acre (112 liters/ha) in any case.

Always disable the pump drive when not in use. Use ground contact wheel lock up if installed. On older models remove the chain. Do not operate planter pump when not applying material.

Marker Adjustments

See also:
“Marker Setup” on page 133 and,
“Marker Maintenance” on page 94.

WARNING

Pinch, Crush and Sharp Object Hazards:
Never allow anyone near the planter when folding or unfolding the markers. You may be injured if caught or struck by a folding or unfolding marker. Markers may fall quickly and unexpectedly if the hydraulics fail.
Dual Marker Speed Adjustment

Refer to Figure 52

Adjust folding speed for dual markers with hex adjustment screws on sequence valve body. There is an adjustment screw for raising speed ① and one for lowering speed ②. You can identify adjustment screws by markings stamped in the valve body.

Turn adjustment screws clockwise to decrease folding speed and counterclockwise to increase folding speed. With tractor idling at normal operating speed, adjust marker folding to a safe speed. Excessive folding speed could damage markers and void the warranty.

After adjusting folding speed, tighten jam nuts on hex adjustment screws to hold settings.

Marker Disk Adjustment

⚠️ CAUTION ⚠️

Sharp Object Hazard:
Use caution when making adjustments in this area. Marker disks may be sharp.

Refer to Figure 53

To change angle of cut, and the width of the mark, loosen ½ inch bolts ⑤ holding disk assembly.

For a wider mark (W), increase the angle of the marker with respect to the tube ⑤. For a narrower mark (N), reduce the angle.

You can also invert the disk blade on the hub to change the direction of throw.

Tighten bolts ⑤.

⚠️ The direction of travel (T) tends to drive the disk angle to Wide. If bolts are not tight enough, or loosen over time, the disk will slip into the Wide mark configuration.
Height Switch

The height switch informs the seed monitor about the lowered/raised status of the planter. On all planters, the monitor only counts seed when the planter is lowered and the Drive is activated. On electric drive planters, the switch also enables or disables electric drive.

Refer to Figure 54

1. Loosen the bolts holding the height switch bracket and rotate the switch and bracket away from the frame pivot.
2. Lower the planter to the height at which seed delivery should begin.
3. Rotate the switch towards the frame pivot until the spring actuator just touches the frame.
4. Rotate the switch in until it clicks. Tighten the bolts to secure it in place. Be sure frame tube will not crush switch when unit is fully loaded.

It may be necessary to loosen the screws holding the switch and rotate the switch slightly on the bracket.

a. When a hydraulic drive planter is raised, the switch state is ignored during “FILL DISK” and “5 REV TEST” operations.
Row Implement Adjustments

To get full performance from your planter, you need a good understanding of row cleaner, coulter, fertilizer, opener, meter, seed firmer, and press wheel operation.

Frame-Mounted Row Accessories

Terra-Tine™ Adjustment

Refer to Figure 55

All adjustments must be made with the unit in the fully raised position.

NOTICE

Excess Wear Risk:
Check that the Terra-Tine Row Cleaner tines DO NOT touch the coulter blade or any other attachments. At least 1/2 in. (13 mm) clearance is recommended. Tine contacts cause excess wear to all parts involved.

1. When the blade is out of the soil, adjust the lock collar height to set the height of tine fingers flush with the bottom of coulter blade.
2. Side-to-side alignment can be done by rotating the shank mount around the vertical shaft and tightening the square head set screw.

Refer to Figure 56

3. Fore-to-aft adjustment is accomplished by adding or removing the extension arm ① to place the Terra-Tine Row Cleaner to either side of the coulter hub depending on the desired position or clearance between other attachments. Testing has shown better performance behind the hub, but available space may dictate the mounting position.
Frame-Mounted Coulters

Refer to Figure 57

At the shaft ①, adjust the coulter depth for a running depth ② of 4 to 4 1/2 in. (10.2 to 11.4 cm) below ground level if off row, if on row as a no-till coulter operate at planting depth only ③. Refer to the Vantage I manual (204-376M) for further adjustments.

Do not adjust the spring ④ tension. It is factory pre-set.

Vantage I Applicator

Refer to Figure 58

At the back plate ⑤, adjust the tine height for a running depth ⑥ of 1 in. (2.5 cm) below ground level ③. Refer to the Vantage I manual (204-376M) for further adjustments.
25 Series Row-Unit Adjustments

Refer to Figure 59, which depicts a 25 Series row unit populated with most options supported on YP1225IR & YP1625IR (excepting scrapers and Seed-Lok®)

1. **Lock-Up Pin Storage Hole** (hole Standard)
 See “Row Unit Shut-Off” on page 68.

2. **Down-Pressure Cam** (Standard)
 Row units are mounted on parallel arms. This parallel-action mounting allows the row-unit to move up and down while staying horizontal. Springs add an adjustable force, set by the cam, to the row weight. See “Row-Unit Down Pressure” on page 58.

3. **Meter Pressurization Air Inlet** (Standard)
 Pressure-regulated air enters the meter here and holds seed in the disk pockets. See “Fan and Meter Pressurization Adjustment” on page 48.

4. **Seed Delivery Hose Inlet** (Standard)
 Air carrying the bulk seed is vented at the bottom of the air release cone. Gravity then carries the seed into the meter at the shutter. The hose is easily removed for inspection. There are no adjustments.

5. **Air-Pro® Seed Meter** (Standard, Choice of Disks)
 See “Air-Pro® Meter Disk Installation” on page 67.

6. **Seed Inlet Shutter** (Standard)
 This controls the level of bulk seed at the disk. There are four operating settings, plus fully open (clean-out) and fully closed (shut-off or storage). See “Seed Inlet Shutter Adjustment” on page 65.

7. **Side Gauge Wheel Depth** (Standard)
 The T-handle sets planting depth by controlling the height of the side gauge wheels relative to the opener discs. See “Side Gauge Wheel Adjustments” on page 63.

8. **Press Wheel Force, Angle, Stagger** (Standard)
 The press wheels close the furrow, gently pressing the soil over the seed to ensure good seed to soil contact for even emergence. See “Press Wheel Adjustments” on page 73.

9. **Row Unit Lock-Up Hole** (Hole Standard)
 Pins are standard on some models. With the row unit raised above level, the lock-up pin is inserted here. See “Row Unit Shut-Off” on page 68.

10. **Row Cleaner** (Option)
 Row cleaners clear trash from the row, to a depth set by an adjustment on the arms. See “Unit-Mount Cleaner Adjustments” on page 60.

11. **Unit-Mount Coulter** (Option)
 Coulters cut remaining trash and begin opening the seed furrow. Working depth is set by row depth and a mounting hole selection. See “Unit-Mounted Coulter Adjustments” on page 61.

12. **Opener Discs** (Standard)
 Row-unit double disc openers create the seedbed furrow. They have adjustments for angle and spacing. See “Row-Unit Opener Disc Adjustments” on page 62.

13. **Scrapers** (Optional, not shown)
 Inside scrapers require no adjustment. For gauge wheel scrapers, see “Adjusting Gauge Wheel Scrapers” on page 64.

14. **Seed Firmer** (Seed Flap Standard, not shown)
 An optional seed firmer (Keeton® shown) minimizes seed bounce and improves soil contact. It may also deliver fertilizer. See “Seed Firmer Adjustments” on page 71.

15. **Press Wheel Type** (Choice)
 A variety of single and dual press wheel assemblies are available, some region-specific. Consult your Great Plains dealer.
Row-Unit Down Pressure

Row-unit springs provide the down pressure necessary for row-unit discs to open a seed trench. The springs allow the row-units to float down into depressions and up over obstructions. Springs also provide down force on coulters when using optional row mounted coulters.

You can adjust down pressure individually for each row-unit. This is useful for penetrating hard soil and planting in tire tracks. For best results always adjust tractor tires so they are not ahead of 30 in. or 70 cm rows.

Use only enough down pressure to cut the seed trench and maintain proper soil firming over seed. Excessive row-unit down force will lead to premature wear on row-unit components. Excessive down force will also cause uneven seed depth.

Refer to Figure 60 through Figure 62

To adjust down pressure, use 1 1/8 in. (29 mm) open end wrench or tool stored under the walkboard. Position wrench on nut and pull back and down. Move adjustment cam to new setting. If using cast tool stored under the walkboard, be sure row unit is off the ground to fully relax springs.

Minimum and maximum settings are indicated by position of adjustment cam. Each notch on adjustment cam will increase the down pressure on the row-unit springs. Use the table below as a setting reference.

Do not set all rows any higher than notch 4. Using settings above this on all rows will create uneven depth control and improper function.

<table>
<thead>
<tr>
<th>Cam Notch</th>
<th>Pounds</th>
<th>Kilograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero (out of notch)</td>
<td>Lock-Up & Maintenance</td>
<td></td>
</tr>
<tr>
<td>one</td>
<td>320</td>
<td>145</td>
</tr>
<tr>
<td>two</td>
<td>355</td>
<td>160</td>
</tr>
<tr>
<td>three</td>
<td>385</td>
<td>175</td>
</tr>
<tr>
<td>four</td>
<td>435</td>
<td>200</td>
</tr>
<tr>
<td>five</td>
<td>485</td>
<td>220</td>
</tr>
<tr>
<td>six</td>
<td>535</td>
<td>245</td>
</tr>
<tr>
<td>tip</td>
<td>Do Not Use</td>
<td></td>
</tr>
</tbody>
</table>

Individual rows may be set higher if running in heavy tire tracks.
Refer to Figure 63

The ideal amount of down-force causes the side gauge wheels to compress any loose surface soil, but not press a trench into subsoil.

To assess down-force, operate the planter for a short distance on typical ground (with or without seeding), and stop. Leave the planter lowered (row units in ground).

At several row units, inspect the furrow created by the opener discs, but prior to furrow closing by the press wheels.

Be sure to inspect rows both in and out of tire tracks.

Refer to Figure 64

1. If the side gauge wheels are leaving no tracks, or light tracks, increase down-force.

2. If the wheels are compressing trash and loose soil, and leaving clear tracks right at the top of the subsoil, down-force is probably correct and needs no adjustment.

3. If the wheels are creating a trench into the subsoil, down-force is too high and needs to be reduced.
Unit-Mount Cleaner Adjustments

Refer to Figure 65 and Figure 66

Optional Martin row cleaners are unit-mounted, using:
UMRC: Unit-Mount Row Cleaner (stand-alone), or
UMC-RC: Unit-Mount Coulter RC (on coulter bracket, with or without a coulter disc present).

There are two adjustments:
1. Wheel placement (forward or aft mounting hole, for more or less aggressive cleaning), and
2. Wheel height, adjusted by a stop. Cleaner arms float. The stop only sets the lowest position.

In UMRC mount, a pinned cross-tube 3 on the mount adjusts the depth. In UMC-RC (coulter) mount, a sliding down-stop block 5 adjusts how close to the ground the row cleaners operate.

The row cleaner needs to be adjusted for your conditions, crop changes, and as coulters and openers wear. Ideally, cleaners contact only the trash, and do not disturb the soil. If allowed to “dig”, row cleaners can reduce seed coverage.

Suggested initial depth is tine tips at ground level.

Make the adjustment with the planter raised. Install lift-assist cylinder locks. Also check bolt 5 tightness prior to each planting session, to avoid down-stop slippage.

To adjust the row cleaner:
1. Determine the height adjustment required. Measure from the lowest tine to the ground. Determine the desired new measurement.
2. Support most or all of the weight of the arm to prevent injury and ease the adjustment. Loosen bolts 5 on UMC-RC. Remove bent pin 2 on UMRC.
3. Support arm at desired height.
4. UMRC: Slide adjustment tube 1 until cross-tube 3 contacts arm at target height. Insert bent pin 2 in whichever hole pair is most in alignment.
5. UMC-RC: Slide the down-stop 6 on the arm 4: - back toward the pivot for shallower cleaning, or - forward toward the tines for deeper cleaning. Tighten the bolts 5. Each possible hole pairing adjusts the tine height by about \(\frac{3}{4} \) in. (19 mm).
6. Check the new height measurement.

Refer to Row Cleaner manual 204-085M-A for further information on use, adjustment and maintenance of row cleaners.

CAUTION

Sharp Objects Hazard:
Wear hand protection when working in this area. Row cleaner tines, casting edges and coulter blades are sharp.
Unit-Mounted Coulter Adjustments

The ideal operating depth for coulters is $\frac{1}{4}$ in. (6 mm) above opener depth. Although they may have originally been set to this depth, coulter (and opener) blades wear with time, and may need adjusting.

Adjusting the coulter depth is accomplished by re-mounting the coulter blade in one of the six mounting holes arranged in a staggered pattern in the coulter bracket.

Refer to Figure 67 and Figure 68

Raise planter and install cylinder locks before working on coulters. Row unit may be fully lowered or locked up. Do not attempt to move blade when the current or new position causes it to contact the ground during adjustment. Be careful around the front end of row units. Row clear tines and coulter blades may be sharp.

To adjust coulter depth:

1. Dismount row cleaner (if present) to reduce risk of injury.
2. Determine the present opener and coulter depths.
3. Note which bracket hole the coulter is presently using.
4. Determine which new hole will position the coulter closer to the $\frac{3}{16}$ inch-above depth. See the table below. If none, don’t move it.
5. Remove the $\frac{5}{8}$-11x4 in. bolt, lock washer and nut (7 in Figure 67).
6. Move the blade to the new position. Insert the bolt, and tighten on the lock washer and nut.

<table>
<thead>
<tr>
<th>Hole Number</th>
<th>Depth of (new) coulter blade relative to (new) opener blades</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 in. (25 mm) above</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{5}{8}$ in. (16 mm) above</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{1}{4}$ in. (6 mm) above</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{3}{8}$ in. (9.5 mm) below</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{3}{4}$ in. (19 mm) below</td>
</tr>
</tbody>
</table>

7. Re-adjust openers, if installed.

If a worn coulter cannot be adjusted to satisfactory operating depth, replace coulter blade.
Row-Unit Opener Disc Adjustments

25 Series openers have three adjustments:

1. planting/seed depth
2. opener disc to disc clearance
3. gauge wheel/opener disc clearance

Setting Planting Depth

Refer to Figure 69

The “T” handle ① sets planting depth by limiting the how high the side depth gauge wheels ride relative to the opener discs. The position of the seed tube itself is fixed relative to the discs, and is not adjusted.

To adjust seed depth, pull the “T” handle ① up and back, move it forward or aft, and set it back in a different pair of holes in the scale.

- For shallower planting, move the “T” handle ① forward.
- For deeper planting, move the “T” handle ① back.

Opener Disc Contact Region

Refer to Figure 70

Opener disc angle and stagger is not adjustable, but disc-to-disc spacing is, and may need attention as discs experience normal wear. Spacers will need to be reset when blades are replaced.

The ideal spacing causes the blades to be in contact for about one inch ①. If you insert two pieces of paper between the blades, they should slide to within zero (touching) to 1 1/2 in. (3.8 cm) of each other. If touching, the gap between the blades should not be significantly greater than the thickness of two sheets of paper.

If the contact region is significantly larger or there is a large gap, it needs to be adjusted by moving one or more spacer washers.

Adjusting Disc Contact

Refer to Figure 70 and Figure 71

1. Raise the planter and install lift cylinder locks.
2. Remove the side gauge wheels ② on the row unit in need of adjustment.
3. Remove the bolt ③ retaining the opener disc ④ on one side. Carefully remove the disc. Do not lose the hub components and spacer washers ⑤, ⑥.
4. To reduce the spacing between the discs (the normal case), move one spacer washer from the inside ⑤ to the outside ⑥ of the disc.
5. Reassemble and check disc contact.
Side Gauge Wheel Adjustments

Refer to Figure 72

The side gauge wheels have two, interrelated adjustments:

- angle of side gauge wheel, and
- distance between side gauge wheels and discs.

Refer to Figure 73

Adjust side-gauge-wheel angle so wheels contact row-unit discs at the bottom of wheel at 2 in. planting depth and gaps open \(\frac{3}{8} \) to \(\frac{5}{8} \) in. (9.5 to 16 mm) at top. Check with row-units in soil so wheels are held up.

At the same time, keep side gauge wheels close to opener discs so openers do not plug with soil or trash. However, wheels should be out far enough so discs and wheels turn freely.

Refer to Figure 74

To adjust side gauge wheels:

1. Raise planter slightly removing weight from side gauge wheels.
2. Loosen hex-head bolt ①. Move wheel and arm out on o-ring bushing.
3. Loosen pivot bolt ②. Turn hex adjuster ③ so indicator notch ④ is at 5 o’clock to 7 o’clock.

Use this as the starting point for adjustment.

4. Move wheel arm in so side gauge wheel contacts row unit disc. Tighten hex-head bolt ① to clamp arm around bushing and shank.
5. Check wheel-to-disc contact at 2 in. (5 cm) planting depth. Lift wheel 2 in. (5 cm) and release. When let go, wheel should fall freely.

- If wheel does not contact disc at bottom to area where blade leaves contact with soil, move hex adjuster until wheel is angled for proper contact with disc.
- If wheel does not fall freely, loosen hex-head bolt ① and slide wheel arm out just until wheel and arm move freely. Tighten hex-head bolt ① per grade: 1/2 in. Grade 5 bolt, 76 foot-pounds (105 N-m). 1/2 in. Grade 8 bolt, 110 foot-pounds (150 N-m).
6. Keep turning hex adjuster and moving wheel arm until the wheel is adjusted properly. When satisfied, tighten pivot bolt ② to 110 foot-pounds.

Adjusting Gauge Wheel Scrapers

Refer to Figure 75

Scrapers are optional, and may be useful in moist or sticky soils that tend to accumulate on gauge wheels and reduce intended planting depth.

To adjust scrapers:

1. Loosen nut ⑥.
2. Slide scraper ⑥ toward gauge wheel ⑦ until scraper touches tire.
3. Slide scraper ⑥ away from wheel ⑦ leaving a ⅛ in. (3 mm) gap at ⑧.
4. Rotate scraper left and right around bolt, making sure it cannot touch tire if bumped in field. If it can touch tire, back scraper away from wheel until it cannot.
5. Center scraper angle on bolt ⑤ until gap ⑧ is constant.
6. Tighten nut ⑥.

Figure 75
Gauge Wheel Scraper Adjustment
Meter Adjustments

There are adjustments for seed inlet, and choice of disks. There are no other adjustments, in particular no brush adjustments, at the meter.

Meter Rain Cover

The rain cover keeps side winds from unseating seed in disk pockets. It also keeps precipitation, sunlight and field debris out of the meters.

Refer to Figure 76

To remove the rain cover, peel the flexible snap latches, at top 1 and rear 2, away from the meter housing. Pivot the cover forward and down at tab 3 in slot.

When removing a cover, inspect it for damage and missing parts. If a cover does not have both latches, and an intact edge seal under the latches, the cover is apt to be lost during transport or field operations.

To replace a latch, temporarily remove the seal near the latch. Slide the replacement latch onto the cover lugs from the meter side, then snap the other end down over the lugs. Re-install the seal.

Seed Inlet Shutter Adjustment

Refer to Figure 77 (showing the shutter at setting 3)

The seed inlet shutter regulates the volume of bulk seed presented to the seed disk. The operating settings vary with crop, seed size and treatments. The shutter also has settings for row shut-off (completely closed), and clean-out (wide open).

The Seed Rate Charts include suggested initial shutter settings. Refine these settings based on experience, and on inspection of the slope of the seed pool at the bottom of the seed disk.

The shutter is operated by a handle. Lift the handle away from the meter plate. Move the handle to half a setting higher than the new setting, then back to the new setting, and lower the pawl into that slot.

The table at right is a general summary of shutter settings.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Setting Typically Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top (0)</td>
<td>Closed: Row Shut-Off, Meter Re-Fill</td>
</tr>
<tr>
<td>(1)</td>
<td>Small seeds, such as Milo, with little or no treatments</td>
</tr>
<tr>
<td>(2)</td>
<td>Small treated seeds and edible beans (such as Soybeans)</td>
</tr>
<tr>
<td>(3)</td>
<td>Corn, round popcorn</td>
</tr>
<tr>
<td>(4)</td>
<td>Large corn, or heavily treated corn</td>
</tr>
<tr>
<td>Bottom (5)</td>
<td>Wide Open: Clean-Out</td>
</tr>
</tbody>
</table>

Figure 76
Rain Cover Removal

Figure 77
Seed Inlet Shutter
Optimal Seed Pool Slopes
The optimal seed slope is one that results in the most consistent seeding, with minimal skips and doubles.

The column at right has photographs of pool slopes found to be optimal for representative seeds.

If the suggested initial shutter settings do not seem to be working for your seed, adjust the shutter to achieve specific reserve slope targets.

Refer to Figure 78
For medium size and smaller seeds that flow easily, the slope runs from just above the 8:00 (o’clock) position on the housing wall, forward and down to one or two seeds deep at the base of the rear strip brush 1.

Refer to Figure 79 and Figure 80
For medium size and larger, or heavily treated smaller seeds that flow less easily, the slope runs from at or slightly above the 8:30 (o’clock) position on the housing wall, forward and down to 3-6 seeds deep at the base of the rear strip brush 1.

In general, the seeds at the base of the strip brush need to be deep enough that no air escapes there, and so that just enough seeds are present to begin populating cells.

Keep the top left/rear end of the pool below the 9:00 o’clock position (meter horizontal center-line).

Meter Re-Fill
Once planting is underway with the seed pools set, it is infrequently possible for bridging at or above the inlet to starve the meter of seed.

A completely empty meter causes seed monitor “Row Failure” alarm, with a report of the row number[s] involved. Row numbers are counted from the left wing (outside row is row 1).

Stop, and put the tractor in Park. Leave the fan running. Locate the failed row, remove the rain cover, and verify that the meter is empty. Note the shutter setting. Temporarily open the shutter one of two notches wider. if the problem was inlet bridging, seed should flow into the meter immediately.

If inlet bridging is not the problem, little or no seed flows into the meter with the shutter open wider. In this case, the problem is further upstream in the seed flow, and may be bridging at the air release screen at the top of the meter. Close the shutter completely for about 15 seconds. This prevents meter pressurization air from opposing seed delivery air. The delivery air pressure usually collapses the bridge. Re-open the shutter and see if seed now fills the meter.

If no obvious foreign object was the cause of the bridging, the shutter setting may have been too small for the seed. Verify that this and other operating rows were at the correct initial shutter setting. If so, re-set the shutters to the next higher opening.

NOTICE
Foreign Object Risk:
After clearing a bridge, or a delivery blockage upstream, check the seed pool at the meter for any debris that might have been the original cause. Remove such debris from the meter before planting. Don’t run the risk of an object lodging in a seed pocket and causing on-going skips.
Air-Pro® Meter Disk Installation

1. Cross-check Seed Rate Chart data against part number/description molded into disks to be used.

NOTICE

Population Risk:
Use the same disk in all active rows.

2. Inspect disks to be installed. Do not install damaged or excessively worn disks. Either can cause irregular seeding. Chips and cracks accelerate brush wear.

3. Remove meter rain cover (page 65).

Refer to Figure 81 (depicting an empty meter)

4. Inspect meter (see page 89 for details).

5. Make sure clamp ① is aligned with seat ②.

Refer to Figure 82

6. With the seed pocket side facing the meter housing, place the new seed disk on the disk seat.

7. Rotate disk clamp ① clockwise 45° to clamp disk. Clamp seats into detents ③ in disk hub.

 - On a new meter, or with new brushes installed, force the disk into the brushes to allow the disk clamp to rotate. This condition eases as the brush fibers are trained during initial rotations.

 - With slightly used brushes, when a disk is first clamped, it is normal for the disk hub to be flat with the face of the disk seat only on the inlet (rear) side. The disk fully seats as it first turns. This condition eases as the brush fibers receive further use.

NOTICE

Brush Mis-Seating Risk:
Rotate disks forward shortly after disk installation. If planting is not anticipated within an hour or two of disk installation, rotate the drive system a few turns to ensure that meter brushes lean in the correct direction. Correct lean improves meter performance and reduces air consumption. This step is particularly important for new brushes.

Brush seating may be accomplished with or without seed present, and may be combined with “FILL DISK”. See step 9 on page 48.

8. Reset seed inlet shutter ④ to setting recommended by Seed Rate Chart, or to your own developed value.

9. On the seed monitor console, select the new Material, seed disk Cell Count, and target population.

10. Reinstall rain cover (page 65).
Removing a Seed Disk

Refer to Figure 84

1. Remove rain cover. If seed is present, close shutter 4 to prevent more seed from entering meter. Attach funnel (page 87).
2. Hold seed disk in meter. Rotate disk clamp 1 counterclockwise 45° to release disk.
3. Tilting top of disk toward meter, slowly remove disk, allowing seed to collect in funnel. Open shutter to release remaining seed up to wing tube.
4. Clean seed from all brushes. Clean disk seat (2 in Figure 81 page 67), so that new disks can seat fully. Inspect brushes for excess wear and damage. See “Meter Brush Maintenance” on page 89.
5. Inspect removed disks for excess wear and damage. Set aside any disks requiring replacement. Clean other removed disks and place in storage. See “Seed Disk Maintenance” on page 91.
6. Reinstall the rain cover (page 65).

Row Unit Shut-Off

Skip-row operations, such as planting from every other row when switching from 30 inch twin-row to 30 inch single-row, requires shutting down unused rows.

Shutting off seeding at a row involves 4 to 7 steps:
1. Identify the rows to shut off.
2. Fully close seed inlet shutter (always done).
3. Replace seed disk with blank disk (always done).
4. Close seed flow to row at Y-tube (if present).
5. Lock up row unit to reduce wear (optional).
6. Reset marker extension (if used, page 133).
7. Reset monitor active row pattern and row spacing to avoid nuisance alarms (always done).

Meter drive is not disabled on 25AP row units during shut-off.
1. Identify Rows to Shut Off
On twin-row planters, openers are installed with short and long opener mounts. If locking up unused rows of a twin-row planter, shut off the front (short mount) rows.
On single-row planters with mid-length mounts, any rows may be locked up.

2. Close Seed Shutter
Refer to Figure 85 on page 68
Lift the handle away from the plate. Move it to the top position, and release the handle into the notch.
Closing the shutter prevents meter pressurization air from leaking into the bulk seed air system, resulting in lower pressures in adjacent rows, with risk of skips.
The shutter also stops seed flow from a row as soon as the meter is empty. Bulk seed flow to the row falls to nil as soon as the seed backs up to the air release vent at the top of the meter. If the row is served by a Y-tube, the Y-tube also needs to be shut off for the row (step 4).

3. Install Blank Disk
Refer to Figure 86
Clean out meter. See “Meter Clean-Out” on page 87. Remove seed disk and install blank disk. See “Air-Pro® Meter Disk Installation” on page 67.
Blank disks (part number 817-841C) are essential in row shut-off, both to maintain consistent meter back-pressure to meter pressurization and to prevent wear on a seed disk.
Blank disks are engineered to simulate a seed disk with seed in all pockets. Blanks are particularly important on the rows with lines to the pressure chamber.

4. Close Y-Tubes
Refer to Figure 87
If any shut-off rows are served by a Y-tube, close the valve for the branch to that row. Rotate the valve cap until the indicator/handle is perpendicular to the tubes.
Closing the Y-tube prevents seed from entering an unused hose, reducing waste and simplifying clean-out.

NOTICE
Irregular Seeding Risk:
Always use a blank disk in a shut-off row. Operating with no disk, or with a seed disk but no seed, destabilizes the regulated airflow, particularly at rows with pressure sensor lines.
5. Lock-Up Row

NOTICE

Machine Damage Hazard:

Do not lock up the rear rows on a twin-row YP1225IR or YP1625IR planter. They will strike other machine components in folding, and be damaged.

Alternate twin-row units (the front units) can be pinned in the up position to accommodate single-row spacing.

Refer to Figure 88

The lock-up pins ① for each front row unit are located in a storage hole ② in the row unit mount. To lock up a unit, the unit must be raised, and the pin moved to the lock-up hole ③ in the row unit shank.

⚠️ If you lose a pin, the replacement part number is 805-435C

1. Raise the planter. Although this adjustment can be made with the planter lowered, the springs will be in tension, and will require more effort. The extra force may also damage tools.

2. Install lift assist cylinder locks. Lower parking stands.

3. Set the down pressure spring cam to zero, per the instructions on page 58.

4. Raise the row unit high enough that the hole for the pin is above the lower parallel arm. This can be done in several ways, including:
 a. use a hoist at the rear of the shank ④
 b. use a jack under the shank extension ⑤

WARNING

Crushing and Sharp Object Hazards:

Do not attempt to lift a row unit by hand. The weight of the unit, plus the force of the springs (even at minimum) is too great (plus, a free hand is needed for pin insertion). Even with multiple people lifting, hand-lifting is unsafe - there are numerous sharp edges, and the row unit snaps down violently if a grip is lost.

CAUTION

Crushing Hazard:

Use a jack or hoist. Raising a row unit on a block by lowering the planter is risky. The potential for hydraulic failure creates a safety hazard. Full lowering can damage components.

Refer to Figure 89

5. Remove the pin from the storage hole ② and insert and secure it in the lock-up hole ③.

6. Lower row unit until lock-up pin rests on lower parallel arm.

NOTICE

Certain Machine Damage:

Do not pin the row unit while it is in the lowered position. If the pin is inserted below the parallel arm, unit damage occurs as soon as planting begins.
Seed Firmer Adjustments

25 Series row units accept one of two optional firmers.

CAUTION

Sharp Objects Hazard:
Row unit disc blades may be sharp. Use caution when making adjustments. To adjust the Keeton® Firmer, lower the planter until the discs of the row units are resting on the ground.

Keeton® Seed Firmer Adjustment

The optional Keeton® Seed Firmer is an engineered polymer shape that slides down the seed trench. It traps seeds as they exit the seed tube and firms them into the bottom of the furrow.

Refer to Figure 90

The Firmer is provided with a preset tension which is recommended for using the first year. The tension screw ① can be tightened in subsequent years according to your needs. Firmers should provide just enough tension to push seeds to the bottom of the trench.

Measure the distance from the ground to the head of the tension screw. This distance should be 4 to 4 ½ in. (10.2 to 11.4 cm). If not, loosen the bolts in the mounting bracket and select different holes until the proper measurement is attained.
Seed-Lok® Seed Firmer Lock-Up

Optional Seed-Lok® firming wheels provide additional seed-to-soil contact. The wheels are spring loaded and do not require adjusting. In some wet and sticky conditions the wheels may accumulate soil. To avoid problems associated with this, you can lock-up the firmers.

Refer to Figure 91 (which depicts a row unit with discs, side depth wheels/arms and press wheels removed for illustrative purposes - removal is not necessary for lock/unlock)

To lock up Seed-Lok® wheels:
1. Raise planter. Insert lift assist cylinder locks.
2. Lift Seed-Lok® lock-up handle 1 until lever stop 2 is free to rotate.
4. Push up on Seed-Lok® wheel 4 until wheel arm latches up 5.

To release a locked-up Seed-Lok®:
1. Insert a 1/4 in. tool drive tip in the tool hole 6 of the handle 1. Alternatively, lift up on the wheel 5.
2. Rotate the handle clockwise (handle arm up) until the Seed-Lok® wheel releases at the latch point 5 and falls free.
3. While holding the handle up, rotate the raised portion of the lever stop 2 under both sides 2 of the handle at the arm end. Remove the tool.

Seed-Lok® Seed Firmer Lock-Up (older style)

Optional Seed-Lok® firming wheels provide additional seed-to-soil contact. The wheels are spring loaded and do not require adjusting. In some wet and sticky conditions the wheels may accumulate soil. To avoid problems associated with this, you can lock-up the firmers.

Refer to Figure 92

To lock up Seed-Lock wheels:
1. Raise planter. Insert lift assist cylinder locks.
2. Rotate Seed-Lok® lock-up handle 1 90° down on top of row unit body.
3. Push up on Seed-Lok® wheel 2 until wheel arm latches up.

Engage the lever stop under the handle 2 when Seed-Lok® is in use. If left disengaged 3, a furrow obstruction could cause unintended lock-up.
Press Wheel Adjustments
Attached to the rear of each row-unit is one of several press wheel options.

To provide consistent seed firming, the press wheels are free to move downward from their normal operating position. This system maintains pressing action even if the row-unit arm is lifted when the discs encounter obstructions.

Refer to Figure 93
Press wheels are attached to each row-unit body. The press wheels close the seed trench and gently press soil over seed.

An adjustable spring in the press wheel mechanism creates the down pressure needed to close the seed trench. The amount of force needed will vary with field conditions.

To adjust, move adjustment handle.
• For less down pressure, move handle forward toward planter.
• For more down pressure, move handle back away from planter.

 increased press wheel spring force may require increased row-unit down force to maintain depth.

 The factory setting on the press wheel is staggered to achieve optimum residue flow.

Refer to Figure 94
To adjust press wheels from staggered to even, remove 5\(\frac{1}{8}\) in. bolt ①, and lock washer ②. Reinstall spacer ③, press wheel ④ and hardware to the other hole location.

Press Wheel Centering
If one press wheel is running in the seed trench, or the wheels are not centered over the trench, the angle ⑦ of the press wheel assembly can be adjusted as follows:

Refer to Figure 95
1. Determine how far, and in which direction, the press wheel assembly needs to move to center the wheels.
2. Raise planter and install lift assist cylinder locks. See “Important Safety Information” on page 1.
3. Loosen the ½ inch hex-head bolts ⑧ and ⑨.
4. Turn the hex head cam ⑦ under the forward hex head jam bolt ⑥, and move the required amount.
5. Tighten both hex-head bolts ⑧ and ⑨.

If press wheel adjustments do not provide satisfactory furrow closing, your conditions may require alternate press wheels. A variety of wheel assemblies are available. Consult your Great Plains dealer.
Troubleshooting

Planting Rate Problems

When starting up with a new planter, a new crop or a new population it is important to physically double check what the monitor is reporting in the cab by digging seeds. This is to verify that you are set up correctly to plant the desired population. Do not rely solely on the population reported by the DICKEY-john® monitor.

Also during start up it is common to encounter alarms and readouts on the DICKEY-john® console that don’t seem to make sense. It is critical to troubleshoot these alarms not only to make sure the planter drive is set properly to hit the target population, but also to fix incorrect entries in the DICKEY-john® monitor to eliminate nuisance alarms.

Before entering the troubleshooting charts to remedy a monitor or population problem, it is helpful to use the following flowchart to get a handle on what may be wrong. The basis for finding what is wrong comes from knowing exactly what the planter is actually doing in the soil. Always dig or observe seed on the ground when checking populations.

1. Is the spacing on the ground correct?
 No: Check the ground drive transmission and range sprocket selections, or the population settings on a hydraulic drive unit. See also “Population Too Low” or “Population Too High” in the troubleshooting charts.
 Yes: Go to step 2.

2. Is the reported population ½ the actual or is the reported population too high by a factor of 2?
 No: Go to step 3.
 Yes: An incorrect row spacing value entered in the seed monitor can cause this. Example: 15 inches instead of 30 inches. Correct the row spacing error on the DICKEY-john® console.

3. Is the population on the screen close to the target population?
 No: See “Population Too Low” or “Population Too High” in the troubleshooting charts.
 Yes: If slightly under, see “Population Too Low” if slightly over, see “Population Too High”.

For seed monitor issues, see also the DICKEY-john® Planter/Drill Control User Manuals, “TROUBLESHOOTING & ALARMS” section.

Suggested Furrow Check:

Plant a short distance and dig seeds, or run with the closing wheels wired up to leave an open seed trench. Based on seeds found, determine an average distance between seeds. Compare the distance between seeds to the seed spacing listed in the charts for your population. This is listed as “inches per seed”.

Suggested Furrow Check:

Plant a short distance and dig seeds, or run with the closing wheels wired up to leave an open seed trench. Based on seeds found, determine an average distance between seeds. Compare the distance between seeds to the seed spacing listed in the charts for your population. This is listed as “inches per seed”.

For seed monitor issues, see also the DICKEY-john® Planter/Drill Control User Manuals, “TROUBLESHOOTING & ALARMS” section.
Seed Pool Troubleshooting

Normal: Filling
Seed pool at shutter prevents back-flow of meter pressurization air, allowing seed to flow from delivery system, filling inlet to top of air release screen.

Actions:
- No action required.
- Continue Planting.

Normal: Filled
Once inlet is filled to top of air release screen, air flow from the delivery system is blocked. No further seed arrives until planting reduces the backlog at the inlet.

Actions:
- No action required.
- Continue Planting.

Delivery Blockage or Back-flow Starvation
No seed arriving from manifold. Air back-flow is occurring. Causes may include:
- low fan speed
- seed hose blockage
- no seed available
- Y-tube closed
- meter never primed

Actions:
1. Correct cause of blockage.
2. Perform a one-row seed pool recovery (page 76).
3. Resume planting.

Oversize matter in seed pool at shutter prevents back-flow of meter pressurization air, allowing seed to flow from delivery system, filling inlet to top of air release screen.

Bridging: Screen
Oversize matter in seed has caused a bridge at the top of the inlet. Air back-flow is occurring. When the bridge is released, the seed pool will be insufficient to prevent back-flow.

Actions:
1. Close shutter.
2. Disconnect hose at meter.
3. Tap on screen cone and inspect.
4. Check seed pool for foreign matter.
5. Perform a one-row seed pool recovery (page 76).
6. Resume planting.

Bridging: Shutter
A bridge at the shutter is blocking flow. Causes may include:
- oversize seed
- shutter setting too low
- oversize matter in seed

Actions:
1. If shutter was at suggested opening, increase one notch.
2. Check seed pool for foreign matter.
3. Resume planting.
Seed Pool Recovery

When a meter has been starved of seed, back-flow of air through the open shutter reduces delivery air flow. This causes seed delivery to be slow. If you start or resume planting with an empty seed pool, the delivery flow may be too low to keep the meter supplied. The steps below quickly “prime” the meter by rebuilding the seed pool.

Refer to Figure 97 (which depicts a recovery after an incidence of bridging at air release screen)

1. Close the shutter 1. This stops the air back-flow.
2. Clear the bridge 2 or blockage that caused the meter to run empty.
3. With the fan running, listen for seed 3 to fall into the inlet.
4. Wait for seed fall 4 to taper off and stop.
5. Open the shutter 5 to the operating setting.
6. Start or resume planting.

Population Troubleshooting Charts

Problem	Cause	Solution
--------------------------	---	
Overall Low Population	Incorrect seed rate	Check seed rate charts
	Empty pockets on disk (skips) due to insufficient air pressure.	Increase the controlled air to the meter. See “Fan and Meter Pressurization Adjustment” on page 48.
	Empty pockets on disk (skips) due to sticky seed treatments not allowing seed to rapidly fill the pockets.	Increase seed lubricant.
	Empty pockets on disk (skips) due to rough field conditions causing seeds to fall from the disks.	Decrease field speed or increase the air pressure in the meter.
	Empty pockets on disk (skips) due to seed pool too low, and seeds are not filling every pocket on the disk.	Open shutter one notch.
	Empty pockets on disk (skips) due to disk speed too high, and pockets are not filling.	Decrease field speed or change to a higher cell count disc.
	Empty pockets on disk (skips) due to singulation (4 tufted) brush too aggressive.	Check for matted, stuck together fibers. Wash, scrape clean, or replace as needed.
	Empty pockets on disk (skips) due to seed too big for pocket.	Select the correct disk for the seed size.
Population Too Low

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Low Population (cont.)</td>
<td>Seeds are not falling from disk, and get carried past drop zone. Static electricity can cause small, lightweight seeds to cling to the pocket and not fall out.</td>
<td>The graphite component of Ezee Glide Plus addresses this issue. Increase the amount of Easy Glide Plus and/or more thoroughly mix the lubricant into the seed.</td>
</tr>
</tbody>
</table>
| | Air pressure too low, false information driving the DICKEY-john® software. | Compare the air pressure reported on the monitor console to the mechanical gage. If they do not match:
- Inspect the ⅛ inch sample lines from the row units up to the sensor chamber for leaks.
- Make sure all non-planting rows have blank disks.
- Re-zero the air pressure with the fan off. |
| | Low fan speed: meter starvation due to meter pressurization, leaving insufficient air for seed delivery | Increase fan speed. |
| | Leaking meters in split row: meter starvation due to meter pressurization leaving insufficient air for seed delivery | Install blank disks and close shutters on unused rows. |
| | Excess field speed | Plant within speed ranges recommended in seed rate charts. |
| | Incorrect speed sensor constant | Perform speed calibration per DICKEY-john® monitor manual. |
| **Low Population, Single Row** | Shutter opening too wide - interfering with meter pressurization | Adjust shutter to lower setting. |
| | Shutter opening too narrow - starving meter of seed (low seed pool) | Adjust shutter to higher setting. |
| | Y-tube partially or completely closed, reducing bulk flow to meter or causing bridging | Open Y-tube for row |
| | Meter starvation due to bridging at shutter | Readjust for shutter bridging (page 66). If seed is treated, increase seed lubricant. |
| | Meter starvation due to bridging above inlet, caused by low seed delivery air flow | Clear bridge (page 66). Check that seed delivery system is getting sufficient fan air, and that there are no other obstructions upstream. |
| | Meter starvation due to bridging above inlet, caused by high levels of seed treatment | Clear bridge (page 66). Increase seed lubricant. |
| | Skips due to low meter pressurization at one or several rows | Check shutter setting. Check for excess wear on seed drop brush. Check for loose or leaking pressure hose. |
| | Skips due to debris in disk pockets | Remove rain covers. Inspect and clean out disks. |
| | Row has blank disk installed | Replace with seeding disk. |
| | Seed sensor obscured | Clean out seed tube (see page 88). |
Population Too High

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall High Population</td>
<td>Incorrect seed rate</td>
<td>Check seed rate charts</td>
</tr>
<tr>
<td></td>
<td>Two seeds per pocket on the disk (doubles), due to excess meter pressurization</td>
<td>Methodically decrease the controlled air to the meter. See “Fan and Meter Pressurization Adjustment” on page 48.</td>
</tr>
<tr>
<td></td>
<td>Two seeds per pocket on the disk (doubles), due to pockets too large for the seed</td>
<td>Select a disk with smaller pockets.</td>
</tr>
<tr>
<td></td>
<td>Air meter pressure too high due to pressure sensor not zeroed properly.</td>
<td>Re-zero the air pressure with the fan off. Make sure the displayed pressure reads 0.00.</td>
</tr>
</tbody>
</table>
| | Air pressure too high, false information driving the DICKEY-john® software. | Compare the air pressure reported on the monitor console to the mechanical gage. If they do not match:
 • Inspect the 1/4 in. sample lines from the row units up to the sensor chamber for leaks.
 • Make sure all non-planting rows have blank disks.
 • Re-zero the air pressure with the fan off. |
| | False alarms or actual seed rate errors due to monitor setup with incorrect row count, spacing or active rows | When troubleshooting population issues, always first rule out seed monitor setup. Review planter configuration and monitor setup. |
| | Incorrect cell count | Replace seed disks with correct disks, or reset rate for current disks (if within range). |
| | Incorrect speed sensor constant | Perform speed calibration per DICKEY-john® monitor manual. |
| | Doubles due to incorrect disk for crop or seed size | Use recommended disk for crop and seed size. |
| | Sticky seeds: excess seed treatment | Increase seed lubricant. |
| **High Population, Single Row** | Excess meter pressurization causing doubles | Check shutter. |
| | Worn seed-drop brush and/or strip brushes allowing excess seed to pass | Replace worn brushes. |
| | Incorrect seed disk with higher cell count. | Install correct disk. |

Population Related

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Population Alarms</td>
<td>False alarms or actual rate errors due to monitor setup with incorrect [active] row count or spacing</td>
<td>When troubleshooting population issues, always first rule out seed monitor setup. Review planter configuration and monitor setup.</td>
</tr>
<tr>
<td></td>
<td>Incorrect cell count</td>
<td>Replace seed disks with correct disks, or reset rate for current disks (if within range).</td>
</tr>
<tr>
<td></td>
<td>Incorrect speed sensor constant</td>
<td>Perform speed calibration per DICKEY-john® monitor manual.</td>
</tr>
<tr>
<td>Low Population Bands Just After Turns</td>
<td>Insufficient oil to fan - meter pressures low - seeds falling from disks.</td>
<td>Perform end-of-pass marker and lift operations separately. If already performing separately, reduce marker speed, and/or list more gradually.</td>
</tr>
</tbody>
</table>
Population Related

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mismatch Between Reported and Furrow Population</td>
<td>Small seeds (example milo) are not reliably sensed in the seed tube</td>
<td>Run with rain covers in place to minimize ambient light intrusion. Use the population adjustment factor in the DICKEY-john® monitor system to compensate for missed seeds. For example, change the DICKEY-john® Population Adjustment values from 100% to 130% or 140% as needed. Remember to set this back to 100% for large seeds.</td>
</tr>
<tr>
<td></td>
<td>Seed tube sensor is not counting all seeds</td>
<td>Clean the seed tube of graphite and dust buildup with long narrow seed tube brush. Replace sensors that malfunction.</td>
</tr>
<tr>
<td></td>
<td>Seeds / revolution value in the DICKEY-john® setup does not match the disk cell count.</td>
<td>Correct the value in a setup screen or install the correct cell count disc.</td>
</tr>
<tr>
<td>Unable to adjust air pressure low enough.</td>
<td>Lower limit reached in DICKEY-john® software.</td>
<td>At User Level 2, reduce the controlled air lower limit in the software.</td>
</tr>
<tr>
<td></td>
<td>Fan speed too high, vane rotated to maximum.</td>
<td>Reduce the fan speed.</td>
</tr>
<tr>
<td>Seed too shallow or scattered on ground from a single row</td>
<td>Bottom of seed tube damaged.</td>
<td>Replace seed tube. Avoid setting planter straight down. Use forward motion when lowering.</td>
</tr>
<tr>
<td></td>
<td>Row not penetrating in tire tracks.</td>
<td>Increase down force on parallel arm springs.</td>
</tr>
<tr>
<td></td>
<td>Opener depth too shallow.</td>
<td>Change side depth wheel setting.</td>
</tr>
<tr>
<td>System is unable to automatically control air meter pressure.</td>
<td>Signal from air pressure sensor lost. (failed sensor or wiring)</td>
<td>Air pressure may be controlled manually, consult DICKEY-john® Planter/Drill Control manual, User Level 2/3.</td>
</tr>
</tbody>
</table>

Seed Delivery Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single row doesn’t fill or keep up with other rows.</td>
<td>Y tube is bent/angled off feed pipe.</td>
<td>Loosen pipe and spin so the bend is straight down and Y-tube is not pointing to front or rear of air pipe.</td>
</tr>
<tr>
<td></td>
<td>Drop tube to meter is too long, causing seed to pool and plug hose or Y-tube.</td>
<td>Shorten hose (with planter raised, but row units lowered, to ensure hose is not too short).</td>
</tr>
<tr>
<td>Both rows on one meter outlet low or not keeping up with other rows.</td>
<td>Blockage in air slot in top of airbox.</td>
<td>Clear by using a long skinny tool and taking hose off through hose outlet. It may be necessary to take top off airbox or use side access doors to clear junk from slot.</td>
</tr>
<tr>
<td></td>
<td>Bad hose routing between delivery hose and airbox on wing.</td>
<td>Correct hose routing.</td>
</tr>
<tr>
<td>Multiple rows fail for lack of seed.</td>
<td>Fan speed too high/too low.</td>
<td>Check/adjust fan speed.</td>
</tr>
<tr>
<td></td>
<td>Out of seed.</td>
<td>Add seed.</td>
</tr>
<tr>
<td>Single or multiple hoses plugging just ahead of airbox.</td>
<td>Fan speed too high/too low.</td>
<td>Check/adjust fan speed.</td>
</tr>
<tr>
<td></td>
<td>Possible air leak.</td>
<td>Check for air leak downstream between box and top of meter.</td>
</tr>
<tr>
<td>All rows fail.</td>
<td>Lack of seed.</td>
<td>Fan speed too high. Adjust fan speed.</td>
</tr>
</tbody>
</table>
Seed Delivery Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, or more outlets fail.</td>
<td>Foreign matter in seed chamber in bottom of airbox.</td>
<td>Clean out seed chamber.</td>
</tr>
<tr>
<td>Outlets can be side-by-side or random. Plugging may also move from one outlet to another.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little or no seed to a lot of rows with heavily treated seed.</td>
<td>Seed treatment sticky.</td>
<td>Add Ezee Glide Plus to seed to dry out seed treatment.</td>
</tr>
<tr>
<td></td>
<td>Treatment mixed unevenly and plugging outlets.</td>
<td>Clean out seed. Re-mix.</td>
</tr>
</tbody>
</table>

General Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Alarms</td>
<td>See “Population Troubleshooting Charts” on page 76.</td>
<td></td>
</tr>
<tr>
<td>Excess Seed Remaining</td>
<td>See “Population Troubleshooting Charts” on page 76.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field size different.</td>
<td>After ruling out population problems, re-check geography.</td>
</tr>
<tr>
<td></td>
<td>Excessive gaps between planter passes.</td>
<td>Adjust marker, page 52.</td>
</tr>
<tr>
<td>Seed Consumption Too High</td>
<td>See “Population Troubleshooting Charts” on page 76.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field size different.</td>
<td>After ruling out population problems, re-check geography.</td>
</tr>
<tr>
<td></td>
<td>Excessive overlap.</td>
<td>Adjust marker, page 52.</td>
</tr>
<tr>
<td></td>
<td>Irregular shaped field.</td>
<td></td>
</tr>
<tr>
<td>Rows Not Planted</td>
<td>If not detected by seed monitor, check for plugged row-unit seed tube</td>
<td>Lift planter, expose bottom of seed tube and clean out.</td>
</tr>
<tr>
<td>Uneven seed spacing</td>
<td>See “Population Troubleshooting Charts” on page 76.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric meter drive motor rpm too low for reliable control.</td>
<td>1. Increase field speed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Use a seed wheel with lower cell count.</td>
</tr>
<tr>
<td></td>
<td>Excessive field speed.</td>
<td>Reduce field speed.</td>
</tr>
<tr>
<td></td>
<td>Unclean seed.</td>
<td>Use clean seed.</td>
</tr>
<tr>
<td></td>
<td>Damaged seed tube</td>
<td>Inspect; repair or replace.</td>
</tr>
<tr>
<td></td>
<td>Seed-Lok® plugging.</td>
<td>Lock up Seed-Lok®, page 71.</td>
</tr>
<tr>
<td></td>
<td>Row-unit discs not turning.</td>
<td>See “Row-unit discs not turning freely.” in this Troubleshooting chart.</td>
</tr>
<tr>
<td></td>
<td>Plugged row-unit seed tube.</td>
<td>Lift up planter, expose bottom of seed tube and clean out.</td>
</tr>
<tr>
<td></td>
<td>Lack of proper seed lubrication on seed.</td>
<td>See “Seed Lubricants” on page 104.</td>
</tr>
<tr>
<td>Planter does not fold or unfold fully</td>
<td>Fold cylinders out of phase</td>
<td>Rephase cylinders, refer to page 29</td>
</tr>
<tr>
<td></td>
<td>Air in lines</td>
<td>Bleed fold circuit, refer to page 93</td>
</tr>
</tbody>
</table>
General Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uneven seed depth</td>
<td>Excessive field speed.</td>
<td>Reduce field speed.</td>
</tr>
<tr>
<td></td>
<td>Planting conditions too wet.</td>
<td>Wait until drier weather.</td>
</tr>
<tr>
<td></td>
<td>Incorrect coulter depth setting.</td>
<td>See coulter manual or set unit mounted coulter.</td>
</tr>
<tr>
<td></td>
<td>Excessive or improper row unit down pressure spring setting.</td>
<td>See 25 series row-units, page 57.</td>
</tr>
<tr>
<td></td>
<td>Damaged seed tubes.</td>
<td>Check seed tubes for damage.</td>
</tr>
<tr>
<td></td>
<td>Seed-Lok® building up with dirt.</td>
<td>Lock up Seed-Lok®, page 71.</td>
</tr>
<tr>
<td></td>
<td>Row-unit not penetrating low spots.</td>
<td>Adjust row-unit, see instructions beginning on page 57.</td>
</tr>
<tr>
<td></td>
<td>Rough planting conditions.</td>
<td>Rework the field.</td>
</tr>
<tr>
<td></td>
<td>Seed firmer not in place and set to correct tension.</td>
<td>See “Seed Firmer Adjustments” on page 71.</td>
</tr>
<tr>
<td>Press wheel or row-units plugging</td>
<td>Planting conditions too wet.</td>
<td>Wait until drier weather.</td>
</tr>
<tr>
<td></td>
<td>Too much pressure on row-units.</td>
<td>Reduce down pressure on row-units.</td>
</tr>
<tr>
<td></td>
<td>Coulters set too deep, bring up excess dirt and moisture.</td>
<td>Check coulter adjustment.</td>
</tr>
<tr>
<td></td>
<td>Planter not set to run level from front to rear</td>
<td>Check tongue height page 19</td>
</tr>
<tr>
<td></td>
<td>Backed up with planter in the ground.</td>
<td>Clean out and check for damage.</td>
</tr>
<tr>
<td></td>
<td>Failed disc bearings.</td>
<td>Replace disc bearings.</td>
</tr>
<tr>
<td></td>
<td>Disc blades worn.</td>
<td>Replace disc blades.</td>
</tr>
<tr>
<td></td>
<td>Scraper worn or damaged. Side depth wheels not set correctly.</td>
<td>Adjust side depth wheels page.</td>
</tr>
<tr>
<td>Row-unit discs not turning freely.</td>
<td>Row-unit plugged with dirt.</td>
<td>Clean row-unit.</td>
</tr>
<tr>
<td></td>
<td>Planting conditions too wet.</td>
<td>Wait until drier weather.</td>
</tr>
<tr>
<td></td>
<td>Incorrect side depth wheel adjustment.</td>
<td>See “Side Gauge Wheel Adjustments” on page 63.</td>
</tr>
<tr>
<td></td>
<td>Seed-Lok® is plugging row-unit.</td>
<td>Lock up Seed-Lok®, page 71.</td>
</tr>
<tr>
<td></td>
<td>Failed disc bearings.</td>
<td>Replace disc bearings.</td>
</tr>
<tr>
<td></td>
<td>Bent or twisted row-unit frame.</td>
<td>Replace row-unit frame.</td>
</tr>
<tr>
<td></td>
<td>Partially plugged row-unit seed tube.</td>
<td>Lift up planter, expose bottom of seed tube and clean out.</td>
</tr>
<tr>
<td>Press wheels not compacting the soil as desired.</td>
<td>Incorrect spring handle setting</td>
<td>See “Press Wheel Adjustments” on page 73.</td>
</tr>
<tr>
<td></td>
<td>Insufficient row unit down-force</td>
<td>See “Row-Unit Down Pressure” on page 58.</td>
</tr>
<tr>
<td></td>
<td>Use of incorrectly shaped tire for your conditions.</td>
<td>Wedge shaped wheels work best on narrow spacings and in wet conditions. Round edge wheels work best in wider row spacings and drier conditions.</td>
</tr>
<tr>
<td></td>
<td>Not level front to rear.</td>
<td>Check tongue height.</td>
</tr>
<tr>
<td>Seed blowing out of bulk box door area</td>
<td>Fan too fast.</td>
<td>Slow down fan. If already at 3000 rpm, reset fan to 3800 rpm and use fan butterfly valve to reduce airflow.</td>
</tr>
<tr>
<td></td>
<td>Seal from airbox to hopper damaged or not adjusted.</td>
<td>Inspect and adjust seal. Seal should be intact, and compress to about $\frac{1}{2}$ in. (13mm) under seed container.</td>
</tr>
</tbody>
</table>
General Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air lines plugging between air box and Y splitters</td>
<td>Fan too slow.</td>
<td>Speed up fan.</td>
</tr>
<tr>
<td></td>
<td>Air leaks between air box manifold and splitters</td>
<td>Check for leaks and correct as needed.</td>
</tr>
<tr>
<td></td>
<td>Improper hose routing, sags or kinks</td>
<td>With planter unfolded, hoses should for a gentle “S” shape through the holders, with no deep sags.</td>
</tr>
<tr>
<td>Air lines plugging between Y-tube and meter</td>
<td>Sag or kink in air hose.</td>
<td>Check air tube placement in tube mount weldment. If correct, shorten any hose that has stretched due to age.</td>
</tr>
<tr>
<td></td>
<td>Meter is shut off but Y-tube is open.</td>
<td>Shut off Y-tube.</td>
</tr>
<tr>
<td></td>
<td>Air tube assembly not positioned on correct tab.</td>
<td>Move assembly to properly position Y-tubes over row meters.</td>
</tr>
<tr>
<td></td>
<td>Sag in air hose due to incorrect frame height</td>
<td>Raise or lower the tongue so center portion of frame is level with gauge wheel area.</td>
</tr>
<tr>
<td>Hydraulic marker functioning improperly, or not at all</td>
<td>Marker/Fold switch set to Fold.</td>
<td>CFM Switch must be set to “Marker”. Set tractor remote circuit to Neutral or Float before operating switch.</td>
</tr>
<tr>
<td></td>
<td>Marker/Aux valve set to Aux</td>
<td>On a planter with optional Auxiliary Hydraulics, selector valve must be set to Marker for markers to function. Set tractor remote circuit to Neutral or Float before changing valve.</td>
</tr>
<tr>
<td></td>
<td>Air or oil leaks in hose fittings or connections.</td>
<td>Check all hose fittings and connections for air or oil leaks.</td>
</tr>
<tr>
<td></td>
<td>Low tractor hydraulic oil level.</td>
<td>Check tractor hydraulic oil level.</td>
</tr>
<tr>
<td></td>
<td>Loose or missing bolts or fasteners.</td>
<td>Check all bolts and fasteners.</td>
</tr>
<tr>
<td></td>
<td>Needle valve plugged.</td>
<td>Open needle valve, cycle markers slowly and reset needle valve, refer to page 52.</td>
</tr>
<tr>
<td></td>
<td>Needle valve(s) in sequence valve plugged.</td>
<td>Open needle valves, cycle markers slowly and reset needle valves, refer to page 52.</td>
</tr>
<tr>
<td>Marker disk does not mark</td>
<td>Marker folding linkage does not have enough slack to allow marker disk to drop into field depressions.</td>
<td>Maximum down float should be limited by the slot at the rod end of the marker cylinder, refer to page 52.</td>
</tr>
<tr>
<td>Auxiliary Hydraulics Inoperative</td>
<td>Marker/Fold switch set to Fold.</td>
<td>CFM Switch must be set to “Marker” for Aux to function. Set tractor remote circuit to Neutral or Float before switching.</td>
</tr>
<tr>
<td></td>
<td>Marker/Aux valve set to Marker</td>
<td>Selector valve must be set to Aux. Set tractor remote circuit to Neutral or Float before changing valve.</td>
</tr>
</tbody>
</table>
Maintenance

Proper servicing and maintenance is the key to long implement life. With careful and systematic inspection, you can avoid costly maintenance, downtime, and repair. Always turn off and remove the tractor key before making any adjustments or performing any maintenance.

WARNING

Crushing Hazard:
Always have transport locks in place and frame sufficiently blocked up when working on implement. You may be severely injured or killed by being crushed under the falling implement.

WARNING

High Pressure Fluid Hazard:
Check all hydraulic lines and fittings before applying pressure. Escaping fluid under pressure can have sufficient pressure to penetrate the skin. Fluid escaping from a very small hole can be almost invisible. Use paper or cardboard, not body parts, and wear heavy gloves to check for suspected leaks. If an accident occurs, seek immediate medical attention from a physician familiar with this type of injury.

1. After using your planter for several hours, check all bolts to be sure they are tight.
2. Remove excess slack from chains. Clean and use chain lube on all roller chains as needed.
3. Maintain proper air pressure in planter tires.
4. Keep disc scrapers properly adjusted.
5. Clean planter on a regular basis. Regular and thorough cleaning will lengthen equipment life and reduce maintenance and repair.
6. Lubricate areas listed under “Lubrication” on page 98.
7. Replace any worn, damaged, or illegible safety labels by obtaining new labels from your Great Plains dealer.

Tongue Lift Cylinder Locks

Center lock channels are provided for use during service procedures with the planter partially or completely unfolded.

They are not necessary for normal transport operation. When the planter is fully folded, the center section is supported at lift by the wing locks on the tongue.

Install Center Lift Locks

Refer to Figure 98

1. Remove lock channels from storage locations.
2. Raise the unfolded planter.
3. Install lock channels on exposed cylinder rods.

Remove Center Lift Locks
Refer to Figure 99
1. Raise the unfolded planter, to allow removal of the lock channels.
2. Move the lock channels to their storage locations.

Material Clean-Out

When planting is completed, it is commonly the case that some seed remains. There may be seed in the hopper or bulk box, seed in the airbox, a small amount of seed in the hose lines, and seed in the meters. Some meters may be filled up to the air release vent (which prevents additional seed from reaching that meter).

A complete system clean-out is a 3 step process.
1. Empty airbox (and hopper, if desired).
2. Blow residual seed to meters.
3. Clean out meters with fan running.

⚠️ WARNING
Entrapment and Rapid Suffocation Hazard:
Never enter a hopper for any reason. Keep strainer in place at all times.
▲ A hopper that is full or merely appears full can be an entrapment hazard. You can sink entirely into the grain, or into an oxygen-deficient void, and suffocate in a matter of seconds. Grain bridges and crusts are especially dangerous.
▲ When hazardous fumes are present, you can be quickly overcome even with the hopper lid open.
▲ Do not enter a hopper for material loading, material unloading, hopper cleaning or meter maintenance.
▲ Clean hopper by power washing from outside hopper top.

⚠️ CAUTION
Possible Dust and Chemical Fume Hazard:
Wear a respirator, and any other protective equipment specified by the seed and/or seed treatment supplier. Expect dust and fumes during hopper clean-out.
Hopper Clean-Out
Perform hopper clean-out with the fan off.

Refer to Figure 100
1. Close the slide gate ① at the base of the hopper.
2. Place a tarp under the seed cart.

Refer to Figure 101
3. Open the clean-out door on the bottom of the airbox. Seed in the airbox immediately falls onto the tarp.
 ※ If needed, additional access doors are provided.
4. Open the slide gate slowly. The remaining seed in the hopper falls onto the tarp. Use the slide gate to regulate the flow and, as needed, stop it while recovering seed from the tarp.
5. Rapidly open and close the slide gate to dislodge seed in the tracks. Tap on the sides of the hopper to dislodge residual seed.
6. Close slide gate.
 Close clean-out door.
7. Perform an air system clean-out to remove final amounts of residual seed from airbox, and all seed in meters.

Air System Clean-Out

Refer to Figure 102
1. Shut off slide gate door at bottom of seed box or bulk hopper.
2. Place a pan or tarp under the airbox manifold to catch seed.

Refer to Figure 103
3. If the planter has Y-tubes, shut off the gates at all of the Y-tubes.

Refer to Figure 104
4. Open airbox clean-out door to empty seed from the manifold.
 ※ If needed, additional access doors are provided.
5. Shut the clean-out door under manifold.

6. Turn on the air fan and let it run. Use the “SPLIT AIR -” softkey® to reduce the regulated air pressure to a low value, 1 in. H₂O or less - this diverts most of the air to the bulk seed delivery system.

 If most of the meters are shut off, reduce fan speed as necessary to obtain a low meter pressurization.

7. Start at one end of planter and perform a meter clean-out (page 87).

8. Open the Y-tube gate feeding that meter. Let the air blow seed out of the meter. Use the meter shutter to start and stop seed flow if using a small container.

9. Close the Y-tube gate and shutter for that meter.

10. Repeat procedure on the next meter in line. Continue with this procedure until you have reached the opposite end of the planter.

11. Final Check:
 During air system clean-out, it is common for a few seeds to dislodge and make their way to meters already cleaned. To avoid seed size causing problems for the next disk to be used, and to avoid crop mixing, make a pass along all the rows, opening and closing shutters, removing any stray seed.

a. The “FILL METER” function can divert all the air to seed delivery, but only does so for a short period of time (~90 seconds).
Meter Clean-Out

When planting is completed, it is commonly the case that some seed remains. There may be seed in the hoppers, hose lines, and meters.

Refer to Figure 105

The planter includes an 817-811C container for meter clean-out, stored in a spring-loaded holder at the right rear of the air manifold. The container can hold all the seed in the meter and inlet (up to a closed slide gate).

The container can be converted into a true funnel for complete system clean-out.

The hoppers are connected to the rows with clamped hose, and are not intended to be routinely unlatched and tipped for clean-out.

Funnel Conversion

Materials and tools needed:

- a length of 1 1/2 inch I.D. hose
- a worm drive clamp with a working diameter of approximately 1 1/2 to 2 1/4 in.
- a hacksaw with fine-toothed blade

Trim the sump from the funnel. Slide the hose fully onto the funnel tip. Secure with clamp (do not over-tighten clamp, the funnel wall be crushed).

The choice of complete system clean-out process depends on whether you are using the 817-811C as a container or funnel.

a. The funnel wall is thin ABS. Scissor-type pipe-cutting tools may fracture it. Rotary-type pipe cutting tools may slip off.
Refer to Figure 106
The 817-811C seed collection accessory (funnel 1) provided with the planter can be used in one of two ways:

- As provided, the 817-811C is a container that can hold the entire seed volume present from the meter up to a Y-tube (or two where the row hose connects to the wing tubes).
- The 817-811C can also be used as a true funnel. For this use, cut the end off the sump 2, and attach a hose or tube with 1 \(\frac{1}{2} \) in. (3.8 cm) inside diameter.

The funnel may be attached to the housing of the seed meter, freeing your hands for other tasks during clean-out. Normal use of the funnel is:

1. Close the seed inlet shutter on the meter (page 65). This minimizes the seed volume at disk removal.
2. Remove the rain cover (page 65). The funnel cannot be snapped in place with the cover installed.
3. Align the left (rear) end of the funnel lip 3 with the top of the lower (rear) cover latch ear. Place the right (front) end of the funnel lip 3 between the meter housing and the seed tube.
4. Rotate the funnel forward until the slot at lip center engages a tab on the bottom center of the meter housing.
5. Remove the seed disk (page 68).
6. Slowly open the seed shutter (page 65) to empty the seed up to the Y-tube or wing tube.
7. If the air system is running (and Y-tube open), there may be more seed than the funnel can hold (as a container). Use the shutter to turn seed flow off, and empty funnel.

Refer to Figure 107
8. Clean seed from all brushes (shop vac recommended).
9. Inspect brushes (page 89).
10. Rotate funnel clockwise, remove and empty.
11. For imminent operations:
 - Install next seed wheel or blank disk (page 69) for operations. Set inlet shutter for next seed (page 65).
12. For storage:
 - Close seed inlet shutter. Leave disk out.
13. Reinstall rain cover (page 65).

Seed Tube Clean-Out
The seed sensor in the seed tube can be obscured by build-up of dust, dirt and seed treatments. This can cause false low population alarms.

The planter includes a seed tube brush (Great Plains part number 891-259C).
Meter Brush Maintenance

⚠️ CAUTION ⚠️

Possible Chemical Hazard:
Wear a respirator for brush cleaning. Brushes will have talc and graphite residue, and may have residues of hazardous seed treatments.

Refer to Figure 108

A HEPA vacuum cleaner is recommended for brush cleaning. Washing brushes is not recommended and may cause matting. Do not scrape them with sharp instruments.

The first indications of excess brush or damage wear are normally observed on the seed monitor or in air system operation.

• If the tufted brushes (5) are worn/damaged, the seed “double” rate rises, increasing population.

 Finding an occasional cracked seed “hung up” on a tuft fiber is not uncommon, and is not an indicator that brush maintenance is required. Merely remove the seed.

• If the strip brushes (6) are worn/damaged, air pressure regulation may become unstable, or require increasing fan speed over time.

 If you find you need to exceed recommended fan rpm ranges, the regulated air system may be taking too much air due to meter leakage.

 In severe cases, seed may leak past the strip brushes, causing spikes in population. If you frequently observe seed in between the strip brushes, one or both may need replacement.

• If the seed drop brush (7) is worn/damaged, its anti-static effect may fade, which can result in “skips” due to smaller seeds failing to release, and lower populations.

 If an obvious groove is worn in the drop brush, replace it.
Meter Brush Replacement
Consult the Parts manual (401-625P) for current replacement part numbers.

Refer to Figure 109
Tufted Brush Replacement
2. Remove the tufted brush assembly [12], and replace with new assembly.
3. Re-insert the 10-24 screws, and re-start the Nylock nuts. Carefully tighten each nut just until plate has no play under the screw heads.
4. Add a half turn to the nuts. Do not tighten fasteners to normal 10-24 torque, or the plate may fracture.

Strip Brush Replacement
Do not loosen or remove any of the three 5/16-18 cap screws [15] retaining the brush holder.
1. Insert the flat blade of a large screwdriver into the slots of the brush holder snaps [13]. Turn each snap clockwise to release brush holder [14].
2. Prepare to catch drop brush [19] (which will fall lose). Slide brush holder left and up to free front edge from under washer [17]. Remove brush holder.
3. Remove used strip brushes from the holder by sliding them downward out of the grooves.

Refer to Figure 110
4. Insert replacement strip brushes into grooves at holder bottom so that notched ends [18] are at the bottom.

Refer to Figure 109
5. Check strip brush positioning with a trial re-insertion of the brush holder. The ends of the long brush must fit snugly into meter housing grooves at top [19] and lower rear [20]. The bottom end of the short brush must fit snugly in the lower front housing groove [20]. If any significant force is required to re-seat the brush holder, a strip brush is likely too high or too low.
6. Relax the position of the brush holder, re-position the drop brush (see below), and re-seat the brush holder.

Seed Drop Brush Replacement

Refer to Figure 109
1. Insert the flat blade of a large screwdriver into the slots of the brush holder snaps [13]. Turn each snap clockwise to release brush holder [14].
2. Prepare to catch drop brush [19] (which will fall lose). Slide brush holder left and up. Remove drop brush.
3. Position new drop brush so that it is flat against back of meter housing, and under ridges on leading edge of brush holder.
4. Slide holder forward/down to engage drop brush. Swing lower, then upper snap into engagement.
Seed Disk Maintenance

Refer to Figure 111

When removing seed disks, inspect them for wear and damage. If there is any seed dust or treatment build-up in the cell pockets ①, or along the raised wiper ridges ②, clean the disks and reinspect.

Replace disks for conditions including:

- Chips at circumference ③. These will leak air.
- Chips at edges or in sculpted surfaces of cell pockets ①. These can leak air and/or adversely affect singulation.
- Cracks over 2 inches (5 cm) long in the working face ④ of the disk, or any cracks in support webs or to an edge.
- Warping - if any part of the disk does not press firmly on the seed drop brushes (page 67) in operation, replace the disk.
- Wear - if a wiper ridge is worn away, replace the disk. If the seed pockets are worn through, or the air ports ⑤ have enlarged, replace the disk.

Cleaning and Storing Seed Disks

CAUTION

Possible Chemical Hazard:

Wear gloves when washing disks. Avoid spray. Do not wash disks where food is prepared, or where cookware or dinnerware is washed. Seed disks will have talc and graphite residue, and may have residues of hazardous seed treatments. Although the disks are dishwasher-safe, do not wash them in an appliance also used for food preparation or food serving items.

Use warm or hot water, mild soap, and a sponge or soft brush to remove build-up.

If disks are washed, allow them to dry completely prior to storage.

Retain original shipping cartons for disk storage. Otherwise, store them on edge (and not leaning), or stacked horizontally on a spindle, to eliminate any risk of warps. Any seed residue on disks may attract pests. Fully enclose dry disks to prevent rodent damage.
Air Box Residue Clean-Out

Planting in extremely dusty conditions, particularly dusty and humid conditions, or otherwise sticky soils, can lead to air residue build-up inside the airbox. This residue can cause seed delivery blockages.

Refer to Figure 112 and Figure 113 (Figure 112 depicts a partially and a completely plugged agitation port, and build-up in the RH plenum chamber)

Whenever opening the airbox clean-out door, inspect the agitation ports. If any are partially or completely blocked, follow the clean-out instructions on this page.

Seasonally, remove the inspection ports on each of the airbox, and inspect plenum chambers 1 (LH) and 16 (RH). If any build-up is observed, follow the more comprehensive inspection steps and clean-out instructions on this page.

1. Spot the planter at a suitable location for clean-out and follow the parking instructions (page 45).
2. If seed is loaded, close the slide gate for the hopper or bulk seed box (page 85).
3. Set out a tarp for recovery of any expected seed still in the airbox. Open the airbox clean-out door.
4. Remove the inspection port covers from each end of the airbox (not shown in figures).
5. Use an indelible marker to identify the hoses on seed hose ports 1 through 16. Disconnect the clamps and hoses.

Further disassembly of the airbox is not recommended, as joints are sealed with silicone adhesive, and would need to be cleaned and resealed.

6. Inspect the agitation ports. Break up any build-up. Use a hooked tool or wire to pull smaller fragments down through the ports. For larger fragments, reach in through the inspection ports or vacuum them out via those ports.
7. Inspect the entire plenum area for build-up. Break up any deposits. Vacuum them out through the inspection ports.
8. From the seed hose ports, inspect the seed air ports. Break up any deposits. Vacuum out from clean-out door.
9. With all ports and doors still open, operate the planter fan to blow up any remaining loose residues.
10. Reconnect the seed hoses. Reinstall the inspection port doors. Close the clean-out door.

Flushing the airbox with water is not recommended. If done, operate the fan for an extended period to completely remove any moisture prior to storage or field operations.
Bleeding Hydraulics

WARNING

High Pressure Fluid Hazard:
Relieve pressure before disconnecting hydraulic lines. Wear protective gloves and safety glasses or goggles when working with hydraulic systems. Escaping fluid under pressure can have sufficient pressure to penetrate the skin causing serious injury. Use a piece of paper or cardboard, NOT BODY PARTS, to check for leaks. If an accident occurs, seek immediate medical attention from a physician familiar with this type of injury.

Only trained personnel should work on system hydraulics!

Bleeding Lift Hydraulics

Normally the lift hydraulics are bled at the factory before shipping and bleeding should not be required other than to raise fully and hold lever on for one minute or until all cylinders extend fully.

Bleeding Fold Cylinder Hydraulics

Normally the fold hydraulics are bled at the factory before shipping and bleeding should not be required other than to fold fully and hold lever on for one minute or until all cylinders reach the end of their stroke.

NOTICE

Machine Damage Risk:
Do not fold or unfold without first raising planter completely.

If the fold and hold procedure does not clear the problem, perform the following steps:
1. Raise and unfold the planter.
2. Un-pin all fold cylinders (two at center, one each gauge wheel).

Refer to Figure 114

3. Locate the re-phase port on each cylinder. This is a raised blind weldment on one end of the cylinder tube. This is the rod end on gauge wheel fold cylinders, and the base end on center fold cylinders.
4. Support the cylinder with the re-phase port facing up, and that end of the cylinder elevated.
5. Fully extend all cylinders at low flow. Hold circuit for one minute.
6. Fully retract all cylinders at low flow. Hold circuit for one minute.
7. Set circuit to neutral and re-pin all cylinders.

JIC Torque Chart

<table>
<thead>
<tr>
<th>Size</th>
<th>Foot-Pounds</th>
<th>N-m</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/16-20</td>
<td>11-12</td>
<td>15-16</td>
</tr>
<tr>
<td>1/2-20</td>
<td>15-16</td>
<td>20-22</td>
</tr>
<tr>
<td>9/16-18</td>
<td>18-20</td>
<td>24-28</td>
</tr>
<tr>
<td>3/4-16</td>
<td>38-42</td>
<td>52-58</td>
</tr>
<tr>
<td>7/8-14</td>
<td>57-62</td>
<td>77-85</td>
</tr>
<tr>
<td>11/16-12</td>
<td>79-87</td>
<td>108-119</td>
</tr>
</tbody>
</table>

NOTICE

Over-Torque Leak Risk:
JIC (Joint Industry Conference 37-Flare) fittings do not require high torque. Excess torque causes leaks. JIC and ORB (O-Ring Boss) fittings do not require sealant.

NOTICE

System Contamination Risk:
Always use liquid pipe sealant when adding or replacing NPT (National Pipe Thread, tapered thread) pipe-thread fittings. To avoid cracking hydraulic fittings from over tightening, and to keep tape fragments from clogging filters, do not use plastic sealant tape.

bleed only at JIC and NPT fittings. Never attempt to bleed a QD (Quick Disconnect) fitting. Avoid bleeding at ORB fittings.

Figure 114
Cylinder Re-Phase Port
Bleeding Marker Hydraulics

To fold properly, the marker hydraulics must be free of air. If the markers fold in jerky, uneven motions, follow these steps.

Check that tractor hydraulic reservoir is full.

1. Set the solenoid to marker operation.

2. With both markers lowered into field position, loosen hydraulic hose JIC fittings at rod and base ends of marker cylinders. If applicable, loosen fittings on back side of sequence valve.

3. With tractor idling, activate tractor hydraulic valve until oil seeps out around a loosened fitting. Tighten that fitting.

4. Reactivate tractor hydraulic valve until oil seeps out around another loosened fitting. Tighten that fitting. Repeat process until all loosened fittings have been bled and tightened.

Marker Maintenance

Refer to Figure 115

The marker arm is attached to the marker body with a 1\(\frac{1}{2}\)-13x2 1\(\frac{1}{2}\) in. Grade 5 shear bolt. If shear bolt breaks, replace it with a Great Plains part 802-130C or equivalent.

Replacing shear bolt with a lower grade can result in nuisance shears.

NOTICE

Equipment Damage Risk:

Replacing shear bolt with a higher grade bolt can result in marker damage. Replacing the shear bolt with a lower grade can result in nuisance shears.

If an identical Grade 5 bolt is not immediately available, temporarily substitute a metric M12x1.5 6.4 mm length Class 8.8 bolt and nut.

If grease seal cap for marker-disk-hub bearings is damaged or missing, disassemble and clean hub. Repack with grease and install new seal or grease cap.
Disc Spreaders and Scrapers

Refer to Figure 116

1. Remove side gauge wheels from arms to access row-unit discs and scrapers.

2. With the unit raised, check blade spreader for wear. Replace spreader if it is 1/2 in. (13 mm) wide or narrower. To replace, remove disc blade, drive out roll pins, and install new spreader.

3. When reinstalling disc blades, put two shim washers between bearing and Shank on each blade. Tighten bolts.

4. Check that outside disc scrapers are formed to disc blades to help remove any mud. Bend and twist scrapers to fit blades as necessary. After every 200 acres (80 hectares) of operation, check outside scrapers for proper adjustment and wear. Replace outside scrapers as necessary.

25 Series Row-Unit Side Wheels

Figure 117

1. Lift opener side wheel off the ground. Move tire in and out to check for end play. Check for roughness in bearing by rotating wheel. If bearings are rough, inspect and replace if necessary.

2. The side wheels are preset at the factory. However, because of normal wear it may become necessary to make adjustments so the wheel remains close to the disc. Loosen clamp bolt and slide arm inward to take up gap between side wheel and disc blade. If more adjustment is needed, continue at step 3.

3. Remove bolt and wheel. Remove shims from the inside of wheel and place them on the outside of wheel. Always place removed shims from the inside to the outside. When installed, wheel should turn freely and not hit the arm at the curve. Do not add any more shims than necessary.

4. Disassemble side gauge wheel arm from unit. Remove bushing from sleeve and check for wear. If necessary, replace bushing.

5. When reinstalling side gauge wheels, align tab on hex adjustment with notch in bushing. Replace bolt and tighten.

6. Adjust side gauge wheels. See “Side Gauge Wheel Adjustments” on page 63.
Fertilizer System Maintenance

With proper attention to maintenance, end of day clean-out, end of season clean-out and winterization, you can substantially increase the life and reliability of your fertilizer system. Protect the pump, clean the tanks, strainers, lines and nozzles, and you can avoid costly and time-consuming repairs at the next season.

Fertilizers are usually highly corrosive to metals other than stainless steel. Suspension fertilizers can clog system components in storage.

1. Flush entire system with clean water.
2. Remove end caps from booms and flush booms out with water. Drain and replace end caps.
3. Remove strainer and drain it out. Drain all lines and tanks completely to prevent freezing damage.
5. Wash all spilled fertilizer off the planter.

Liquid Fertilizer Strainer

Refer to Figure 118

The fertilizer system uses an in-line strainer to keep damaging particulates out of the pump. The strainer becomes clogged over time, reducing pump rate. Plan to clean the strainer several times per season. Don’t wait for application rates to fall below target. Higher quality liquid fertilizers may require less frequent cleaning.

Disassemble and clean the strainer prior to storage to prevent caking.

In Season Filter Cleaning

1. Shut off the ball valve at the filter, to minimize product spill.
2. Unscrew and remove the bottom canister of the filter.
3. Wash the filter cartridge with water, or replace with new cartridge if necessary.
4. Reinstall the cartridge, canister, and turn on the ball valve.

End of Season Filter Cleaning

1. Load 10 to 15 gallons (40 to 60 liters) in each tank.
2. Pump most of it through the system. If doing this by hand-turning the ground drive wheel, first install the largest drop-line orifice size, and set the pump adjuster to maximum, to increase flow.
3. With valves open, remove the canister. Clean strainer and canister.
4. Drain tanks and lines. Remove boom end-caps to drain wings.
5. Re-install strainer and canister.
6. Add 2 pints (1 liter) of RV antifreeze to each tank. Pump until tank is just empty (which leaves some fluid in strainer).
7. Open supply line above pump inlet. Introduce RV antifreeze, and operate pump until pump is filled.

Possible Chemical Hazard:
Wear proper protective equipment as required by chemical manufacturer. Avoid prolonged breathing of chemical fumes. Wear respirator as required by chemical manufacturer. Some chemicals will cause serious burns, lung damage, and death. Avoid contact with skin or eyes. Seek medical assistance immediately if accident occurs. Know what to do in case of an accident.

Equipment Damage Risk:
Do not leave fertilizer or fertilizer residue in pump. Do not allow air to enter pump. Even for short periods of storage, the entrance of air into the pump causes RAPID and SEVERE CORROSION.
Seed Flap Replacement
3YP1225IR and YP1625A

Refer to Figure 119

To replace an 816-302C seed flap use a needle nose pliers or similar tool to grasp "T" top of flap. Pull upward to pull flap up out of metal bracket.

Push new seed flap down through metal bracket until flap snaps into place with "T" top resting on top of bracket.
Lubrication

Caster Arm Pivot

- **1 zerk each wing end;**
- **2 total**
- **Type of Lubrication:** Grease
- **Quantity:** Until grease emerges

Marker Hinges

- **2 zerk per marker;**
- **4 total**
- **Type of Lubrication:** Grease
- **Quantity:** Until grease emerges

Parallel Pivot Arms

- **4 zerk each arm set;**
- **8 total**
- **Type of Lubrication:** Grease
- **Quantity:** Until grease emerges
Tool Bar Pivot

Vertical and horizontal tool bar pivots.
Type of Lubrication: Grease
Quantity: Until grease emerges

Tongue Lift Cylinder Anchor Pin

At rear of tongue
Type of Lubrication: Grease
Quantity: Until grease emerges

Tongue Slide Roller

1 zerk
Type of Lubrication: Grease
Quantity: Until grease emerges
Wing Pivot, Vertical

1 zerk each wing, at planter center;
2 total
Type of Lubrication: Grease
Quantity: Until grease emerges

25 Series Side Wheel Bushing

2 zerks per row unit;
one each side of each row-unit
Type of Lubrication: Grease
Quantity: Until grease emerges

Drive Chains, Fertilizer Pump (Option)

(not present on hydraulic drive planters)
2 chains at each ground drive pump assembly;
2 total (typically)
Type of Lubrication: Chain Lube
Quantity = Coat thoroughly

Lubricate chains any time there is a chance of moisture, and when being stored at the end of the planting season.
Frame-Mounted Coulter Hub (Option)

<table>
<thead>
<tr>
<th>![Diagram]</th>
<th>20</th>
</tr>
</thead>
</table>

Type of Lubrication: Grease
Quantity: Until grease emerges
Unit-mount coulter bearings are sealed, and require no lubrication or re-pack.

Frame-Mounted Coulter Pivot (Option)

<table>
<thead>
<tr>
<th>![Diagram]</th>
<th>20</th>
</tr>
</thead>
</table>

1 zerk each swivel mount casting
Type of Lubrication: Grease
Quantity: Until grease emerges

Caster Wheel Pivot

<table>
<thead>
<tr>
<th>![Diagram]</th>
<th>50</th>
</tr>
</thead>
</table>

1 zerk each wheel;
2 total
One at pivot on wing and one in end of wing tube
Type of Lubrication: Grease
Quantity: Until grease emerges

Rockshaft Pivot Pins

<table>
<thead>
<tr>
<th>![Diagram]</th>
<th>50</th>
</tr>
</thead>
</table>

Two zerk on top, two on bottom; four total
Type of Lubrication: Grease
Quantity: Until grease emerges
Main Transport Wheel Bearings

- Seasonal
- 2 bearings each side;
- 4 total
- Type of Lubrication: Grease
- Quantity: Re-pack

Gauge Wheel Bearings

- Seasonal
- 2 bearings each side;
- 4 total
- Type of Lubrication: Grease
- Quantity: Re-pack

Marker Disk Hubs

- Seasonal
- 4 bearings; 2 each marker
- Type of lubrication: Grease
- Quantity = Repack
Walkboard Pivot

1 zerk
Type of lubrication: Grease
Quantity: Until grease emerges

Row Cleaner Bearings (Option)

4 zerks each side;
8 total
Type of lubrication: Grease
Quantity: Until grease emerges
To avoid damaging the seal, do not add grease at high pressure.
Seed Lubricants
To maximize performance of Great Plains metering systems, it is imperative to use “Ezee Glide Plus” or Bayer Seed Fluency Agent.

Ezee Glide Plus Talc+Graphite Mix

821-069C bucket, 5 gallon (19 liter)

Ezee Glide Plus Lubricant
“Ezee Glide Plus” is suitable for all seeds, especially treated or inoculated seed, except where talc and graphite mixes are prohibited. *Thorough mixing of seed and added lubricant is required.*

Recommended usage:
For clean seeds other than milo, cotton, and sunflowers sprinkle one cup of Ezee Glide Plus Talc per 4 bushels or units (170 ml per 100 liters) of seed.
For milo, cotton, and sunflowers double the application to one cup (or more) per 2 bushels or units (335 ml per 100 liters) of seed.
For canola or mustard, 1 cup (240 ml) per 30 pound (13.6 kg) bag is a minimum starting value. Mix the seed lubricant early during the seed loading. Use more lubricant in extremely dry conditions.

Adjust this rate as necessary so all seeds become coated while avoiding an accumulation of lubricant in the bottom of the hopper.

For seed with excessive treatment, or for humid planting environments, increase the rate as needed for smooth meter operation.

⚠️ **CAUTION**

Irritation and Chronic Exposure Hazard:
Wear gloves. DO NOT use hands or any part of your body to mix seed lubricant. Wear a respirator when transferring and mixing. Avoid breathing lubricant dust. Not an acute hazard. May cause mechanical eye or skin irritation in high concentrations. As with all mineral spills, minimize dusting during clean-up. Prolonged inhalation may cause lung injury. Product can become slippery when wet.

Bayer Seed Fluency Agent

821-074C Fluency Powder, case quantity

821-075C Fluency Powder, single 4.4 pound bucket

This agent is required by regulation for certain crops in certain regions (such as corn and soybean in Canada). It is an alternative to Ezee Glide Plus in other locales, for large seeds. It is not recommended for smaller seeds such as canola and milo.

a. SDS: Safety Data Sheet, formerly Material Safety Data Sheet (MSDS).
Hydraulic Tongue
A 3-point hitch is standard on the YP1225 and YP1625, but a hydraulic tongue may be substituted.

<table>
<thead>
<tr>
<th>Option Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1225/1625 Hydraulic Tongue; Factory-Installed</td>
<td>401-429A</td>
</tr>
<tr>
<td>YP1225/1625 Hydraulic Tongue; Field-Installed</td>
<td>401-430A</td>
</tr>
</tbody>
</table>

PTO Pump Kits
For tractors lacking a sufficient number of remotes with adequate continuous oil flow capability, kits are available to operate the fan(s) optionally the alternator, via mechanical Power Take-Off (PTO).

A 1000 rpm PTO is required with either:
1 \(\frac{3}{4} \) in. (44.5 mm) 20-spline shaft, or
1 \(\frac{3}{8} \) in. (35 mm) 21-spline shaft.

Order one kit and one coupler.

<table>
<thead>
<tr>
<th>Kits and Couplers</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP12/16 PTO HYDRAULIC PUMP KIT</td>
<td>401-935A</td>
</tr>
<tr>
<td>1 3/4-20 PTO COUPLER</td>
<td>826-777C</td>
</tr>
<tr>
<td>1 3/8-21 PTO COUPLER</td>
<td>826-778C</td>
</tr>
</tbody>
</table>

Operation and installation of the PTO kits is described in manual 411-015M, included with each kit.

Markers
Markers are a standard factory-installed feature on the Planter, but may be optionally deleted, for example, if all planting is done via GPS navigation.

Markers are not trivial to install as a field upgrade. If any possible future planting might require markers, do not delete them from the initial Planter order.

For operations, see:
"Marker Operation" on page 43, and
"Marker Adjustments" on page 52.
Fertilizer System
The Planter supports an optional fertilizer system. This system is required if the optional Keeton® seed firmers or Vantage I applicators are to be used for fertilizing.

To meet the needs of users who already have tractor or cart-mounted systems, the YP1225/1625 system is sold as four independent subsystems:

- Manifold (low or high rate)
- Tank system for seed cart
- Ground drive and pump

Great Plains recommends ordering the manifold and tank subsystems at time of initial planter purchase, as they are not trivial to field-install.

For operations, see: "Fertilizer Tanks (Option)" on page 37, and the Seed Rate manual.

Fertilizer Manifolds
Manifold kits include the relief valve, shut-off valve, strainer, manifold, orifice/check valves and unterminated row-unit drop-lines. They do not include a pump or tanks.

<table>
<thead>
<tr>
<th>Option Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1225 Starter Fertilizer Manifold Kit; Factory-Installed</td>
<td>407-132A</td>
</tr>
<tr>
<td>YP1225 Hi-Rate Fertilizer Manifold Kit; Factory-Installed</td>
<td>407-136A</td>
</tr>
<tr>
<td>YP1625 Starter Fertilizer Manifold Kit; Factory-Installed</td>
<td>407-133A</td>
</tr>
<tr>
<td>YP1625 Hi-Rate Fertilizer Manifold Kit; Factory-Installed</td>
<td>407-137A</td>
</tr>
</tbody>
</table>
Fertilizer Orifice Plates
The manifold systems include size 28, 34 and 48 plates. To order alternate plates, use the following part numbers. Order one per row unit.

<table>
<thead>
<tr>
<th>Orifice Size</th>
<th>Part Number</th>
<th>Port Diameter</th>
<th>Port Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>832-052C</td>
<td>0.020 in</td>
<td>0.20 mm²</td>
</tr>
<tr>
<td>28*</td>
<td>832-056C</td>
<td>0.028 in</td>
<td>0.40 mm²</td>
</tr>
<tr>
<td>34*</td>
<td>832-053C</td>
<td>0.034 in</td>
<td>0.59 mm²</td>
</tr>
<tr>
<td>48*</td>
<td>832-054C</td>
<td>0.048 in</td>
<td>1.17 mm²</td>
</tr>
<tr>
<td>59</td>
<td>832-057C</td>
<td>0.059 in</td>
<td>1.76 mm²</td>
</tr>
<tr>
<td>80</td>
<td>832-055C</td>
<td>0.080 in</td>
<td>3.24 mm²</td>
</tr>
<tr>
<td>98</td>
<td>832-059C</td>
<td>0.098 in</td>
<td>4.87 mm²</td>
</tr>
</tbody>
</table>

* Sizes standard in many fertilizer bundles. Check your accessories before ordering.

VeriFlow Nozzles
To eliminate the need to change orifice plates, you can replace the standard Great Plains nozzles with SprayTarget VeriFlow nozzles. These contain a spring-loaded regulator that provides consistent back-pressure over a wide range of rates and pressures.

Great Plains offers two models of VeriFlow nozzles:

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOZZLE HI-VERIFLOW1 (0.25 to 2.8 gpm at 15 to 60 psi)</td>
<td>829-143C</td>
</tr>
<tr>
<td>NOZZLE VERIFLOW1 (0.15 to 1.5 gpm at 15 to 60 psi)</td>
<td>829-144C</td>
</tr>
</tbody>
</table>

Order one nozzle per active boom clamp.

High-Rate Dribblers
For use only with 25 Series openers.
Dribblers apply liquid fertilizer slightly to the side of the closed furrow behind the press wheel. Dribblers are available in left and right hand offsets, for use on twin rows. Order one dribbler per row.

<table>
<thead>
<tr>
<th>Option Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizer Dribbler Assembly, RH</td>
<td>204-131A</td>
</tr>
<tr>
<td>Fertilizer Dribbler Assembly, LH</td>
<td>204-132A</td>
</tr>
</tbody>
</table>
Liquid Fertilizer Tank
Tank and cart plumbing subsystems:

<table>
<thead>
<tr>
<th>Option Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1225/1625 Tank Kit</td>
<td>407-214L</td>
</tr>
</tbody>
</table>

For operations, see: “Fertilizer Tanks (Option)” on page 37.

Hydraulic Drive Fertilizer Pump
Hydraulic drive fertilizer pump dispenses liquid fertilizer via IntelliAg Control, potential adjusted by prescription map.

<table>
<thead>
<tr>
<th>Option Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1225/1625 HYDRAULIC DRIVE FERTILIZER PUMP</td>
<td>417-405A</td>
</tr>
</tbody>
</table>

Ground Drive Fertilizer Pump
Planters ordered without a fertilizer pump system, or which have an older shaft-driven pump may be upgraded to ground drive JohnBlue piston pump:

<table>
<thead>
<tr>
<th>Option Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP JB GROUND DRIVE PISTON PUMP</td>
<td>407-213A</td>
</tr>
</tbody>
</table>

For operations, see the Seed Rate manual.
82 Bu. or 150 Bu. Seed Hopper
A hopper may be purchased with the Planter or added later.

The 150 bu. hopper is incompatible with the liquid fertilizer tank system, as it occupies the space used for the tanks.

<table>
<thead>
<tr>
<th>Option Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>82 bu. Bulk Hopper</td>
<td>403-143K</td>
</tr>
<tr>
<td>150 bu. Bulk Hopper</td>
<td>403-174K</td>
</tr>
</tbody>
</table>

The hoppers have no other prerequisites on the planter, but you will need a means of top-loading seed when the hopper is mounted on the seed box. Consider ordering the Auxiliary Hydraulic Kit to power an auger.

The 82 bu. hopper is usually, and the 150 bu. hopper is almost always, too heavy to be safely fork-lifted onto the planter if already pre-loaded with seed.

For operations, see: “Loading Materials” on page 31.

Seed Lubricant

<table>
<thead>
<tr>
<th>Description</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezee Glide Plus Talc + Graphite Mix (5 gallon / 18.9 liter container)</td>
<td>821-069C</td>
</tr>
<tr>
<td>Fluency Powder, case quantity</td>
<td>821-074C</td>
</tr>
<tr>
<td>Fluency Powder, single 4.4 pound bucket</td>
<td>821-075C</td>
</tr>
</tbody>
</table>

For use, see “Seed Lubricants” on page 104.

Auxiliary Hydraulic Kit

When the planter is not in motion, these kits enable the marker hydraulic circuit to be used to drive off-planter equipment, such as a seed auger.

<table>
<thead>
<tr>
<th>Option Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1225 Auxiliary Hydraulic Kit</td>
<td>401-435A</td>
</tr>
<tr>
<td>YP1625 Auxiliary Hydraulic Kit</td>
<td>407-441A</td>
</tr>
</tbody>
</table>

For operation, see “Using Auxiliary Hydraulic Circuit” on page 34.
SmartBox® Mounting Kit
These kits support the mounting of AMVAC SmartBox® containers and meters above row units. SmartBox® is a delivery system for pelletized seed/row treatments.

<table>
<thead>
<tr>
<th>Planter Model</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625-2420</td>
<td>403-200A</td>
</tr>
<tr>
<td>YP1625-32TR</td>
<td>403-201A</td>
</tr>
</tbody>
</table>

Row Options, Frame-Mounted

No combination of unit mounted and frame mounted attachments may be mixed.

Under-frame Attachment Kit
Frame-mounted options require this kit, which is not standard on YP planters.

<table>
<thead>
<tr>
<th>Under-frame Kits</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625</td>
<td>204-496L</td>
</tr>
</tbody>
</table>

Terra-Tines

Stand-Alone Terra Tines
These row cleaners are available as frame-mounted, either stand-alone (attached to under-frame attachment kits), or attached to frame-mounted coulters.

<table>
<thead>
<tr>
<th>Stand-Alone Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625-32TR (30 in., double)</td>
<td>207-131A</td>
</tr>
<tr>
<td>YP1625-2420 (20 in., single)</td>
<td>207-135A</td>
</tr>
</tbody>
</table>

Coulter-Mounted Terra Tines

<table>
<thead>
<tr>
<th>Coulter-Mounted Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625-32TR (30 in.)</td>
<td>-</td>
</tr>
<tr>
<td>YP1625-2420 (20 in.)</td>
<td>207-583A</td>
</tr>
</tbody>
</table>
For operations, see "Unit-Mount Cleaner Adjustments" on page 60

Frame-Mounted (Zone) Coulters
Vantage I Coulters
Frame-Mounted Couler Only

<table>
<thead>
<tr>
<th>YP1625 15 in. Blade Packages</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625-2420 (every row, fluted)</td>
<td>204-577A</td>
</tr>
<tr>
<td>YP1625-2420 (30 in. rows, turbo)</td>
<td>204-579A</td>
</tr>
</tbody>
</table>

Frame-Mounted Vantage I Couler

<table>
<thead>
<tr>
<th>YP1625 17 in. Blade Packages</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625-32TR (between rows)</td>
<td>204-625A</td>
</tr>
<tr>
<td>YP1625-2420 (every row)</td>
<td>204-581A</td>
</tr>
</tbody>
</table>
Row Options (Unit-Mount)

No combination of unit mounted and frame mounted attachments may be mixed.

Unit-Mounted Row Cleaners
Optional Martin row cleaners are unit-mount as:

- UMRC “stand-alone”, via unit-mount assembly (①), or;
- UMC-RC via coulter disc mounting bracket (②), with or without a coulter disc.

These bundles include a manual.

<table>
<thead>
<tr>
<th>Single-Wheel, Coulter-Mount</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625-32TR (30 in.)</td>
<td>207-107A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Double-Wheel, Coulter-Mount</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625 (20 in.)</td>
<td>207-119A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single-Wheel, Stand-Alone</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625-32TR (30 in.)</td>
<td>207-111A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Double-Wheel, Stand-Alone</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625 (30 in.)</td>
<td>207-129A</td>
</tr>
<tr>
<td>YP1625 (20 in.)</td>
<td>207-123A</td>
</tr>
</tbody>
</table>

Single-Row planters support single- or double-wheel unit-mounted row cleaners.

Twin-Row planters support only single-wheel unit-mounted row cleaners, in alternating left/right cleaner hub orientations.

These kits do not include a manual. Separately order one 204-085M-A if ordering kits.

<table>
<thead>
<tr>
<th>Individual Row Cleaners</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMRC Dual Wheel</td>
<td>207-213K</td>
</tr>
<tr>
<td>UMRC LH Single Wheel</td>
<td>207-215K</td>
</tr>
<tr>
<td>UMRC RH Single Wheel</td>
<td>207-216K</td>
</tr>
<tr>
<td>UMC-RC Dual Wheel</td>
<td>207-098S</td>
</tr>
<tr>
<td>UMC-RC LH Single Wheel</td>
<td>207-092S</td>
</tr>
<tr>
<td>UMC-RC RH Single Wheel</td>
<td>207-093S</td>
</tr>
<tr>
<td>RC Install/Use/Parts Manual</td>
<td>204-085M-A</td>
</tr>
</tbody>
</table>

For operations, see: See “Unit-Mount Cleaner Adjustments” on page 60.
Unit-Mounted Disc Coulters
Optional unit-mount disc coulters are available with 15 inch fluted blades, 15 inch turbo blades or 14 inch straight blades. If you need complete coulters, with unit mount and blade, the selection includes:

<table>
<thead>
<tr>
<th>15 inch Fluted Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625-32TR (30 in.)</td>
<td>204-527A</td>
</tr>
<tr>
<td>YP1625-2420 (20 in.)</td>
<td>204-545A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14 inch Straight Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625-32TR (30 in.)</td>
<td>204-531A</td>
</tr>
<tr>
<td>YP1625-2420 (20 in.)</td>
<td>;04-5ijyA</td>
</tr>
</tbody>
</table>

Coulter Blades
Replacement and alternate coulter blades include (quantity is 1 per row unit):

<table>
<thead>
<tr>
<th>15 inch Turbo Packages</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo, 15 in. (20 flutes)</td>
<td>820-327C</td>
</tr>
<tr>
<td>Fluted, 15 in. (50 flutes)</td>
<td>820-331C</td>
</tr>
<tr>
<td>Straight, 14 in.</td>
<td>820-259C</td>
</tr>
</tbody>
</table>

For operations, see: "Unit-Mounted Coulter Adjustments" on page 61.
Inside Disc Scrapers

When planting in moist or sticky soils, this scraper is useful in preventing build-up that might otherwise impair opener disc performance.

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Series Inside Scraper</td>
<td>122-278S</td>
</tr>
</tbody>
</table>

This scraper cannot be used with Seed-Lok® seed firmers installed. It is compatible with seed flaps and optional Keeton® seed firmers.

See page 134 for scraper installation. The spring-loaded carbide scraper requires no adjustment.

Gauge Wheel Scrapers

When planting in moist or sticky soils, these scrapers are useful in preventing build-up that might otherwise result in shallow planting.

Order one part per wheel (2 per opener).

<table>
<thead>
<tr>
<th>Wheel Scrapers</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1/2 in. Gauge wheel scraper</td>
<td>404-194D</td>
</tr>
<tr>
<td>3 in. Gauge wheel scraper</td>
<td>404-195D</td>
</tr>
</tbody>
</table>

The scrapers mount on the bottom rear of the depth wheel arm, using the existing bolt and lock washer. The slot in the scraper is long enough to clear the lower zerk, and allow adjustment as wheel and scraper wear.

For operations, see:
“Adjusting Gauge Wheel Scrapers” on page 64.
Seed Meter Disks

Air-Pro® Meters accept a variety of seed disks, each optimized for specific seeds, plus a special blank disk (817-841C) for row shut-off. Disks are simple to change. Choices include:

<table>
<thead>
<tr>
<th>Meter Disks</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank, 0 Cell</td>
<td>817-841C</td>
</tr>
<tr>
<td>Canola, 150 Cell</td>
<td>837-148C</td>
</tr>
<tr>
<td>Canola, 250 Cell</td>
<td>817-991C</td>
</tr>
<tr>
<td>Corn, 24 Cell (Large, Flat)</td>
<td>817-836C</td>
</tr>
<tr>
<td>Corn, 24 Cell (Large, Round)</td>
<td>817-794C</td>
</tr>
<tr>
<td>Corn, 24 Cell (Medium, Round)</td>
<td>837-126C</td>
</tr>
<tr>
<td>Corn, 24 Cell (Small, Round or Flat)</td>
<td>817-795C</td>
</tr>
<tr>
<td>Corn, 40 Cell (Large, Flat)</td>
<td>817-838C</td>
</tr>
<tr>
<td>Corn, 40 Cell (Large, Round)</td>
<td>817-796C</td>
</tr>
<tr>
<td>Corn, 40 Cell (Medium, Round)</td>
<td>837-127C</td>
</tr>
<tr>
<td>Corn, 40 Cell (Small, Round or Flat)</td>
<td>817-797C</td>
</tr>
<tr>
<td>Cotton, 60 Cell</td>
<td>817-857C</td>
</tr>
<tr>
<td>Cotton, Hill Drop, 12 Cell</td>
<td>837-186C</td>
</tr>
<tr>
<td>Milo, Pelletized Sugar Beet, 30 Cell</td>
<td>837-057C</td>
</tr>
<tr>
<td>Milo, Pelletized Sugar Beet, 65 Cell</td>
<td>817-849C</td>
</tr>
<tr>
<td>Milo, Pelletized Sugar Beet, 130 Cell</td>
<td>817-800C</td>
</tr>
<tr>
<td>Soybeans, 84 Cell</td>
<td>817-798C</td>
</tr>
<tr>
<td>Soybeans, 168 Cell</td>
<td>403-551D</td>
</tr>
<tr>
<td>Sunflower, 24 Cell (Large), Popcorn</td>
<td>817-851C</td>
</tr>
<tr>
<td>Volumetric No. 1, 84 Cell</td>
<td>817-867C</td>
</tr>
</tbody>
</table>

Clean-Out Container

One container is provided with the planter. Order the following part for additional or replacement containers.

<table>
<thead>
<tr>
<th>Description</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR METER CLEAN OUT FUNNEL</td>
<td>817-811C</td>
</tr>
</tbody>
</table>

See "Funnel Conversion" on page 87. See "Meter Clean-Out" on page 87.
Seed Tube Brush

One brush is provided with the planter. Order the following part for additional or replacement brushes.

<table>
<thead>
<tr>
<th>Description</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEED TUBE CLEANER BRUSH</td>
<td>891-259C</td>
</tr>
</tbody>
</table>

See “Seed Tube Clean-Out” on page 88.

Seed-Lok® Seed Firmer

The base Planter includes no seed firmers. A choice of firmers is an option in the product bundles, or may be field-installed as kits. Only one type of seed firmer may be installed at the same time.

Meters

<table>
<thead>
<tr>
<th>Meters</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Series Seed-Lok® kit (per opener)</td>
<td>404-093K</td>
</tr>
</tbody>
</table>

For operations, see: “Seed Firmer Adjustments” on page 71.

Keeton® Seed Firmer

The base planter includes no seed firmers. A choice of firmers is an option in the product bundles, or may be field-installed as kits. Only one type of seed firmer may be installed at the same time.

<table>
<thead>
<tr>
<th>Meters</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keeton® seed firmer (per opener)</td>
<td>890-796C</td>
</tr>
<tr>
<td>Keeton® seed firmer (per opener)</td>
<td>890-840C</td>
</tr>
</tbody>
</table>

The Keeton® seed firmer also supports low-rate fertilizer delivery. For this use, the optional fertilizer system (page 106) must also be installed.

For operations, see: “Seed Firmer Adjustments” on page 71.

Row Unit Press Wheels

The base Yield Pro planter includes a choice of press wheels. Additional wheels are available, and all may be field-installed.

This manual does not list kit part numbers as the available wheels are often region-specific. Consult your Great Plains dealer.

For operations, see: “Press Wheel Adjustments” on page 73.
Specifications and Capacities

<table>
<thead>
<tr>
<th></th>
<th>YP1625IR-2420</th>
<th>-32TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Count</td>
<td>24</td>
<td>32 (16 Twin)</td>
</tr>
<tr>
<td>Row Spacing</td>
<td>20 In.</td>
<td>30 In.</td>
</tr>
<tr>
<td>Working Width</td>
<td>40 Ft.</td>
<td></td>
</tr>
<tr>
<td>Span (Width between end rows)</td>
<td>460 In.</td>
<td>458 In.</td>
</tr>
<tr>
<td>Swath (Channel Width)</td>
<td>480 In.</td>
<td>480 In.</td>
</tr>
<tr>
<td>Seed Capacity</td>
<td>Optional 82 or 150 Bu. hoppers, or PROBOX 50 unit bulk seed container</td>
<td></td>
</tr>
<tr>
<td>Transport Width</td>
<td>13 Ft. 6 In.</td>
<td></td>
</tr>
<tr>
<td>Working Length</td>
<td>31 Ft. 2 In.</td>
<td></td>
</tr>
<tr>
<td>Transport Length</td>
<td>41 Ft. 2 In.</td>
<td></td>
</tr>
<tr>
<td>Working Height</td>
<td>11 Ft. 3 In.</td>
<td></td>
</tr>
<tr>
<td>Transport Height</td>
<td>12 Ft. 2 In.</td>
<td></td>
</tr>
<tr>
<td>Transport Clearance</td>
<td>22 In.</td>
<td></td>
</tr>
<tr>
<td>Minimum Tractor Requirement</td>
<td>230 hp</td>
<td>274 hp</td>
</tr>
<tr>
<td>Hitch</td>
<td>3-Point, Hydraulic Tongue Optional</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Circuits Required</td>
<td>Closed-Center, 4 Remotes, 2250 PSI, 25 Gal/Min (fan circuit)</td>
<td></td>
</tr>
<tr>
<td>Weight (empty, base configuration)*</td>
<td>18420 lbs.</td>
<td>20160 lbs.</td>
</tr>
<tr>
<td>Weight (full, max. configuration)*</td>
<td>32100 lbs.</td>
<td>34320 lbs.</td>
</tr>
<tr>
<td>Transport Tire Size</td>
<td>Standard: 14.9R46 8 Star Radial R-1 (380/90R46) Optional: 18.4R42 3 Star R1 (480/80R42)</td>
<td></td>
</tr>
<tr>
<td>Wing Gauge Wheel Tire Size</td>
<td>33x15.5x16.5 12 Ply Skid Steer NHS (395/55B16.5)</td>
<td></td>
</tr>
<tr>
<td>Contact Drive Tire Size</td>
<td>20x8.00-10 Turf NHS</td>
<td></td>
</tr>
<tr>
<td>Opener Down Pressure</td>
<td>320 to535 lbs.</td>
<td></td>
</tr>
<tr>
<td>Opener Travel (Up - Down)</td>
<td>10 In.</td>
<td></td>
</tr>
<tr>
<td>Opener Depth Range</td>
<td>0 to 4 In.</td>
<td></td>
</tr>
</tbody>
</table>

* See page 30 for additional weight data.
Tire Inflation Chart

<table>
<thead>
<tr>
<th>Tire Size</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>380/90R46 Transport</td>
<td>49 psi</td>
</tr>
<tr>
<td>Load Index 156A8/B</td>
<td>(340 kPa)</td>
</tr>
<tr>
<td>14.9R46 8 Star Radial R-1 (380/90R46)</td>
<td>60 psi</td>
</tr>
<tr>
<td></td>
<td>(415 kPa)</td>
</tr>
<tr>
<td>18.4R42 3 Star R1 (480/80R42)</td>
<td>30 psi</td>
</tr>
<tr>
<td></td>
<td>(205 kPa)</td>
</tr>
<tr>
<td>19.0/45-17 12 Ply Skid Steer NHS (395/55B16.5)</td>
<td>58 psi</td>
</tr>
<tr>
<td></td>
<td>(415 kPa)</td>
</tr>
<tr>
<td>20x8.00-10 Turf NHS</td>
<td>16 psi</td>
</tr>
<tr>
<td></td>
<td>(110 kPa)</td>
</tr>
</tbody>
</table>

Tire Warranty Information

All tires are warranted by the original manufacturer of the tire. Tire warranty information is found in the brochures included with your Operator’s and Parts Manuals or online at the manufacturer’s web sites listed below. For assistance or information, contact your nearest Authorized Farm Tire Retailer.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Web site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firestone</td>
<td>www.firestoneag.com</td>
</tr>
<tr>
<td>Goodyear</td>
<td>www.goodyearag.com</td>
</tr>
<tr>
<td>Titan</td>
<td>www.titan-intl.com</td>
</tr>
<tr>
<td>BKT</td>
<td>www.bkt-tire.com</td>
</tr>
<tr>
<td>Gleason</td>
<td>www.gleasonwheel.com</td>
</tr>
</tbody>
</table>
Hydraulic Diagrams
Optional Hydraulic Drive diagram is on page 122.

Lift Hydraulics

![Lift Hydraulics Diagram](image-url)
Fan Hydraulics

Figure 121
Fan Hydraulics
YP1625IR Fold and Marker (w/o Aux)

Figure 122
YP1625IR Fold and Marker Hydraulics (without Aux.)
Auxiliary Hydraulics (Option)

Figure 123
Auxiliary Hydraulics
Hydraulic Tongue (Option)

Figure 124
Hydraulic Tongue
Torque Values Chart

<table>
<thead>
<tr>
<th>Bolt Size</th>
<th>Bolt Head Identification</th>
<th>Torque Values Chart</th>
<th>Bolt Head Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 2</td>
<td>Grade 5</td>
<td>Grade 8</td>
</tr>
<tr>
<td>Grade 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N·m b</td>
<td>ft-lbd d</td>
<td>N·m ft-lb</td>
</tr>
<tr>
<td>1/4-20</td>
<td>7.4</td>
<td>5.6</td>
<td>11</td>
</tr>
<tr>
<td>1/4-28</td>
<td>8.5</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>5/16-18</td>
<td>15</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>5/16-24</td>
<td>17</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>3/8-16</td>
<td>27</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>3/8-24</td>
<td>31</td>
<td>22</td>
<td>47</td>
</tr>
<tr>
<td>7/16-14</td>
<td>43</td>
<td>32</td>
<td>67</td>
</tr>
<tr>
<td>7/16-20</td>
<td>49</td>
<td>36</td>
<td>75</td>
</tr>
<tr>
<td>1/2-13</td>
<td>66</td>
<td>49</td>
<td>105</td>
</tr>
<tr>
<td>1/2-20</td>
<td>75</td>
<td>55</td>
<td>115</td>
</tr>
<tr>
<td>9/16-12</td>
<td>95</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>9/16-18</td>
<td>105</td>
<td>79</td>
<td>165</td>
</tr>
<tr>
<td>5/8-11</td>
<td>130</td>
<td>97</td>
<td>205</td>
</tr>
<tr>
<td>5/8-18</td>
<td>150</td>
<td>110</td>
<td>230</td>
</tr>
<tr>
<td>3/4-10</td>
<td>235</td>
<td>170</td>
<td>360</td>
</tr>
<tr>
<td>3/4-16</td>
<td>260</td>
<td>190</td>
<td>405</td>
</tr>
<tr>
<td>7/8-9</td>
<td>225</td>
<td>165</td>
<td>585</td>
</tr>
<tr>
<td>7/8-14</td>
<td>250</td>
<td>185</td>
<td>640</td>
</tr>
<tr>
<td>1-8</td>
<td>340</td>
<td>250</td>
<td>875</td>
</tr>
<tr>
<td>1-12</td>
<td>370</td>
<td>275</td>
<td>955</td>
</tr>
<tr>
<td>1-1/2</td>
<td>480</td>
<td>355</td>
<td>1080</td>
</tr>
<tr>
<td>1-1/4</td>
<td>540</td>
<td>395</td>
<td>1210</td>
</tr>
<tr>
<td>1-1/6</td>
<td>680</td>
<td>500</td>
<td>1520</td>
</tr>
<tr>
<td>1-1/8</td>
<td>750</td>
<td>555</td>
<td>1680</td>
</tr>
<tr>
<td>1-1/10</td>
<td>890</td>
<td>655</td>
<td>1990</td>
</tr>
<tr>
<td>1-1/12</td>
<td>1010</td>
<td>745</td>
<td>2270</td>
</tr>
<tr>
<td>1-1/16</td>
<td>1180</td>
<td>870</td>
<td>2640</td>
</tr>
<tr>
<td>1-1/18</td>
<td>1330</td>
<td>980</td>
<td>2970</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bolt Size</th>
<th>Class 5.8</th>
<th>Class 8.8</th>
<th>Class 10.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>N·m</td>
<td>ft-lb</td>
<td>N·m ft-lb</td>
<td>N·m ft-lb</td>
</tr>
<tr>
<td>M 5 X 0.8</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>M 6 X 1</td>
<td>7</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>M 8 X 1.25</td>
<td>17</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>M 8 X 1</td>
<td>18</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td>M 10 X 1.5</td>
<td>33</td>
<td>24</td>
<td>52</td>
</tr>
<tr>
<td>M 10 X 0.75</td>
<td>39</td>
<td>29</td>
<td>61</td>
</tr>
<tr>
<td>M 12 X 1.75</td>
<td>58</td>
<td>42</td>
<td>91</td>
</tr>
<tr>
<td>M 12 X 1.5</td>
<td>60</td>
<td>44</td>
<td>95</td>
</tr>
<tr>
<td>M 12 X 1</td>
<td>90</td>
<td>66</td>
<td>105</td>
</tr>
<tr>
<td>M 14 X 2</td>
<td>92</td>
<td>68</td>
<td>145</td>
</tr>
<tr>
<td>M 14 X 1.5</td>
<td>99</td>
<td>73</td>
<td>155</td>
</tr>
<tr>
<td>M 16 X 2</td>
<td>145</td>
<td>105</td>
<td>225</td>
</tr>
<tr>
<td>M 16 X 1.5</td>
<td>155</td>
<td>115</td>
<td>240</td>
</tr>
<tr>
<td>M 18 X 2.5</td>
<td>195</td>
<td>145</td>
<td>310</td>
</tr>
<tr>
<td>M 18 X 1.5</td>
<td>220</td>
<td>165</td>
<td>350</td>
</tr>
<tr>
<td>M 20 X 2.5</td>
<td>280</td>
<td>205</td>
<td>440</td>
</tr>
<tr>
<td>M 20 X 1.5</td>
<td>310</td>
<td>230</td>
<td>480</td>
</tr>
<tr>
<td>M 24 X 3</td>
<td>480</td>
<td>355</td>
<td>760</td>
</tr>
<tr>
<td>M 24 X 2</td>
<td>525</td>
<td>390</td>
<td>830</td>
</tr>
<tr>
<td>M 30 X 3.5</td>
<td>960</td>
<td>705</td>
<td>1510</td>
</tr>
<tr>
<td>M 30 X 2</td>
<td>1060</td>
<td>785</td>
<td>1680</td>
</tr>
<tr>
<td>M 36 X 3.5</td>
<td>1730</td>
<td>1270</td>
<td>2650</td>
</tr>
<tr>
<td>M 36 X 2</td>
<td>1880</td>
<td>1380</td>
<td>2960</td>
</tr>
</tbody>
</table>

- **a.** in-tpi = nominal thread diameter in inches-threads per inch
- **b.** N·m = newton-meters
- **c.** mm x pitch = nominal thread diameter in mm x thread pitch
- **d.** ft-lb = foot pounds

Torque tolerance + 0%, -15% of torquing values. Unless otherwise specified use torque values listed above.
Appendix B - Pre-Delivery

Pre-Delivery Safety

Have all workers review “Important Safety Information” starting on page 1.

CAUTION

Perform no assembly while the planter is on the trailer.

Tools Required

- planter Parts manual (401-625P)
- two or more workers
- tractor or tug with a planter-compatible hitch
- an overhead lifter (forklift or crane) capable of raising a marker arm 12 1/2 ft. (3.8 m). The arm may be over 12 ft. (3.7 m) long and weigh up to 300 pounds (135 kg)
- small jack
- ladder
- basic hand tools

An orientation rose shows isometric Up, Wing, Back, Down, Center and Front in some illustrations.

Unload Truck

Refer to Figure 125

Due to the overhanging main transport wheels ➀, an end dock or pit dock is recommended for unload. If a suitable dock is not available, contact the factory for hoist instructions.

1. With the trailer at the dock, remove all uncrated components shipped on the trailer deck ⃣.
2. Any crated components ➄ may be removed at any time.
3. Hitch the planter to a tractor or tug to prevent movement after tie-down release.

If the planter has the optional hydraulic tongue ⃥ (not shown), see “Local Float on Hydraulic Tongue” on page 18.

4. Release all tie downs.
5. Carefully tow the planter off the deck. Move it to a flat, level location with sufficient room to allow later unfolding.

NOTICE

Equipment Damage Risk:

If the trailer bed will be fully depressed into a pit dock, release tie downs, except at wing casters ➁, before the transport wheels contact the dock sides. If the planter is left fully tied down, it could sustain damage, or lift the trailer from the tractor upon transport wheel contact.
Remove Shipping Wheels

All of the remaining steps may be performed with the planter folded.

Refer to Figure 126

Do not remove the shipping wheels until the planter is supported by its own main transport wheels.

6. Support the weight of each shipping wheel, at the axle. A tire jack suffices.

7. Remove the upper bolts of the shipping wheel arm weldments.

8. Lower support (jack), swinging the arm down until each shipping tire rests on the ground.

9. Prepare for the arms to fall away from the seed cart frame. Use extra workers or provide support lines for the arms. Remove the lower shipping bolts.

10. Return the shipping wheels and fastener sets to the truck driver, or hold for later return to Great Plains.

Before releasing truck, inspect trailer deck for all needed planter components. Parts not found on the deck may be in a crate or a hopper.

Marker Assembly

Install Marker Transport Rests

Refer to Figure 127 (C: to Center; W: to Wing)

For each wing:

11. Select one:
 - 13 113-014H MARKER TRANSPORT REST WELDMEN
 - select two:
 - 12 806-168C U-BOLT 1/2-13 X 2 1/32 X 4 1/2
 - and select four sets:
 - 37 804-015C WASHER LOCK SPRING 1/2 PLT
 - 31 803-020C NUT HEX 1/2-13 PLT

12. Locate the drive shaft bracket with the marker support mount plate.

13. Orient the marker rest with the roller end up, and the gusset to planter rear. Secure to mount plate with U-bolts, lock washers and nuts.

The remaining steps describe marker installation with the planter in the as-shipped configuration, which requires some high work. It is also possible to unfold the planter, nearly fully unfold the incomplete arms, and install the final sections at a more convenient height. However, this requires fully functioning monitor (switch box) and hydraulic connections, which may not be practical unless the customer's tractor is available.
Install Second Marker Sections

Refer to Figure 128 (C: to Center; W: to Wing)

For each wing:

14. Select one of:
 - 113-010H PLANTER MARKER 2ND SECTION LH
 - 113-031H 12 ROW MARKER 2ND SECTION LH
 - 113-481H YP1625 36TR MARKER 2ND SEC LH
 or (not shown):
 - 113-013H PLANTER MARKER 2ND SECTION RH
 - 113-032H 12 ROW MARKER 2ND SECTION RH
 - 113-480H YP1625 36TR MARKER 2ND SEC RH

 Identify the whether the arm is LH or RH, depending on the wing involved.

Install Marker Hinge Pins

15. Select one each:
 - 113-798D MARKER SHEAR PIVOT PIN
 - 804-029C WASHER FLAT 1 SAE
 - 805-058C PIN COTTER 3/16 X 2

 Drive one cotter pin through an end hole (the top hole) of the shear pivot pin . Add a washer under the cotter.

WARNING

Heavy Overhead Object Hazard:
Use adequate lifting means. Use multiple attachment points. Use extra personnel to control the load. The arm section may weight up to 300 pounds (135 kg), and does not balance at the center of its considerable length. If it falls, or you lose control of the load, workers could suffer serious or fatal injuries.

16. Orient the arm (or) with the shear pin hole to the rear (flat plate at the hinge end up, angled edge of plate forward, and the center tube below).

 Hoist the arm, resting the single-tube end in the transport rest, and aligning the shear pivot tube with the shear pivot holes in the hinge .

 Insert a shear pin . Secure with second washer and cotter .

Install Marker Shear Bolts

Refer to Figure 129

17. Select one each:
 - 802-130C HHCS 1/2-13X2 1/2 GR5
 - 803-019C NUT LOCK 1/2-13 PLT

 Insert the shear bolt from the wing end of the hinge . Secure with lock nut .
Install Marker Extension Tube

Check Disk Orientation

Refer to Figure 130 (C: to Center; W: to Wing)

18. Select one:

14 113-794D MARKER EXTENSION TUBE

These tube assemblies are identical for LH and RH use. The disk and spindle are pre-assembled.

Prior to installing the marker extension tube, inspect the disk assembly. The bolts securing the spindle weldment to the tube are to be vertical after installation, and the spindle is to be to the front.

This is merely the factory default orientation. The operator may change it as needed.

Insert and Secure Tube

For each wing:

Refer to Figure 131 (C: to Center; W: to Wing)

19. Select one:

11 806-110C U-BOLT 5/8-11 X 3 1/32 X 4 1/2
and two sets:
88 804-022C WASHER LOCK SPRING 5/8 PLT
78 803-021C NUT HEX 5/8-11 PLT

Minding the spindle orientation, insert the marker extension tube into the marker arm second section to a depth of about 18 in. (45 cm). Secure the extension with the U-bolt, lock washers and nuts.

a. Exact extension value depends on row spacing, row utilization and desired disk angle. Setting this requires full monitor and hydraulic connections, then unfolding the planter and markers in field conditions. See “Marker Setup” on page 133.
Press Wheel Installation

Refer to Figure 132

Press wheel assemblies ☐ may be removed to meet shipment clearance requirements. The removed assemblies are found either in a crate, or a seed hopper.

Refer to Figure 133

There may be two types of press wheel assemblies:

- Long mount ☐ assemblies, which are used on the front (short) row of a twin pair. These mounts have a series of notches ☐ on the side.
- Mid mount ☐ assemblies, which are used on the long (rear) row of a twin pair. These mounts have smooth sides.

Refer to Figure 132

For each row with press wheels dismounted:

20. Remove from the rear most two bolt holes of the shank ☐ and save one each:
 - ☐ 405-032D 1X12 PW ADJUSTER
 - ☐ 802-091C HHCS 1/2-13X1 1/2 GR5
 - ☐ 802-258C HHCS 1/2-13X1 GR5
 and two:
 - ☐ 804-015C WASHER LOCK SPRING 1/2 PLT

Do not disturb, loosen or remove the forward two bolts.

21. Align the 1/2 in. holes in the press wheel assembly with the 1/2-13 tapped holes in the row unit.

Add a lock washer ☐ to the 1/2-13x1 in. hex head bolt ☐. Loosely screw into the rear 1/2 in. hole.

22. Add a lock washer ☐ and the eccentric adjuster ☐ to the 1/2-13x1 1/2 in. hex head bolt ☐. Loosely screw into the forward 1/2 in. hole.

23. Rotate the adjuster ☐ to visually align the press wheel assembly with the row unit, and tighten the adjuster and bolts. See “Press Wheel Centering” on page 73.
Appendix C - Initial Setup

Hydraulic Charge and Bleed

Connect the planter to a suitable hydraulic source and check the condition of the hydraulic systems:
“Unfolding The Planter” on page 22,
“Raising/Lowering Planter” on page 26,
“Folding the Planter” on page 27,
“Fan Circuit Operation” on page 41,
“Marker Operation” on page 43, and if hydraulic drive is installed, run a “FILL DISK” sequence to check motor.

See “Bleeding Hydraulics” on page 93 if any circuits do not operate smoothly.

Console Installation

The planter’s standard seed monitor system includes a virtual terminal and switch panel that must be mounted in the tractor cab. As supplied by DICKEY-john®, the kit includes a flat bracket for the modules, and ball swivel for mounting the bracket in the tractor.

The ball swivel includes four 10-32 screws. You or your dealer must provide the mounting holes for the screws. Your dealer may have alternate suction cup or clamping brackets available if you prefer to avoid drilling holes.

Refer to the DICKEY-john® manual for harness connections. Route wiring harnesses with enough slack to allow for tractor movement, especially on articulating tractors.

Monitor Setup

Refer to the DICKEY-john® IntelliAg® Operator manual for general system information. Data specific to your planter model is provided in a separate Quick Start Guide. Configure the system with this information prior to first use. The Quick Start guides, however, are not specific to individual model row spacings. Use the following data:

YP1625IR Row Spacing Setup Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Active Rows</th>
<th>Channel Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP1625IR-2420</td>
<td>24</td>
<td>480 inches</td>
</tr>
<tr>
<td>YP1625IR-32TR</td>
<td>32</td>
<td>480 inches</td>
</tr>
</tbody>
</table>

Notice

Mount the modules so that they are easy to monitor during planting, but do not interfere with safe operation of the tractor in the field or on public roads.
Level Planter

All frame sections must be level to maintain even planting depth. Before using the planter in the field, make sure the planter is level side-to-side.

Periodic frame-leveling adjustments should not be necessary, but if there are problems with uneven depth, check planter levelness and follow these procedures.

Before making any adjustments be sure the lift cylinders are re-phased and operating properly.

Complete the steps under “Bleeding Hydraulics” on page 93, before proceeding.

Level frame in planting conditions or the planter may not produce desired results.

Refer to Figure 135

1. Unfold the planter fully and set down. Put in field position by lowering and pulling forward.

2. When setting hitch, lower lift cylinders completely. Set the 3-point hitch or hydraulic tongue so that the top of the tongue tube ① is:
 - 46 in. (116.8 cm) above ground for YP1225IR, or
 - 42 in. (106.7 cm) above ground for YP1625IR.
 This is the starting point for adjustments.

Refer to Figure 136

3. If planting 1 ½ in. (3.8 cm) deep, adjust the hitch until frame measures approximately 26 in. (66 cm) from ground to frame at the pivots. When planting at other depths, frame height will vary.

NOTICE

Mis-adjustment Risk:
Planter must be fully lowered to field position and hitch height set before making side-to-side adjustments.

Parallel arms should be parallel with ground, or up to 1 in. (2.5 cm) lower in back. Adjusting a 3-point hitch to level parallel arms may cause frame to sit higher or lower than 26 in.

4. Check parallel arms behind the pivots to ensure that parallel arms are parallel with ground or up to 1 inch lower in back. If needed, raise or lower the 3-point to adjust parallel arms.

5. Once parallel arms are parallel with ground or up to 1 inch lower in back and 3-point is set, measure distance from ground to frame at the pivots.

Refer to Figure 137

6. Measure wings at gauge wheel. If not level with center of frame, adjust eye bolt accordingly.

Eye-bolt adjustments are easier if the planter is first lowered to the ground to remove some of the force on the cylinder.
Wing Alignment

To check and adjust wing alignment:

1. Unfold planter, see “Important Safety Information” on page 1, and place a block ahead of each wing gauge wheel. Pull planter forward against blocks to rock frames back.

Refer to Figure 138

2. Check for proper alignment by running a string line across back of planter toward outer ends of wings. For proper alignment, outside ends of wings (dimension A) should be 0 to ¼ in. (0 to 6 mm) ahead of inside ends (dimension B).

3. To adjust wing alignment, shorten or lengthen eye bolts to change the length of the wing pull bar. Adjust eye bolts 1 in or out until dimension A is 0 to ¼ in. (0 to 6 mm) greater than dimension B.

4. Be sure both wings are adjusted equally or the planter will tend to pull sideways behind the tractor.

Angle of wings is exaggerated for ease of clarification.
Marker Setup

Although markers are factory- or dealer-installed, they are not precisely adjusted for your planter configuration. Prior to first use, set the following:

- marker speed (page 53), and;
- marker extension (below).

You may also want to set/check:

- marker disk angle (page 53).

Marker Extension

Refer to Figure 139

Marker Extension is the distance from the mark in the ground to the centerline (or furrow) of the end row unit (whether that row is in use or not).

When operating with rows locked up, measure to the outside row whether in use or not. Extension values may be different for left and right side, and may be different for opposing passes (each pass in the opposite direction) and concentric passes (each pass in the same direction). The table only includes data for opposing passes.

Refer to Figure 140

To adjust marker extension:

1. Loosen nuts 4 on U-bolts 5.
2. Move marker disc tube 6 in or out to get the proper adjustment.
3. To measure for marker width adjustment:
4. Lower planter in the field and drive forward a few feet.
5. Measure from the centerline/furrow of the outside active row to the mark in the ground made by marker disc.

When correctly adjusted, there is a gap of one row space between passes, as measure between center-lines of outside active rows for single-row, or between center-lines outside active twin row pairs.
Appendix D - Option Installation

122-278S Scraper Installation

Optional carbide disc scrapers are not factory installed. Start with row 1 (left-most row unit).

- If a Keeton® seed firmer is also installed, see the Parts Manual for assembly details.
- This scraper is not compatible with Seed-Lok®.

Refer to Figure 141 and Figure 142

1. Remove one or both opener disc blades to gain safe access to the mount ①. Note the position of bushings and spacers for correct re-assembly (page 62).

2. Select one each:
 - 23 802-024C HHCS 3/8-16X3 GR5
 - 17 129BXT824 BRACKET FOR 890-929C FIRMER
 - 16 122-177D 10HD25 INSIDE SCRAPER MNT TUBE
 Insert the bolt ②, from the rear, through the lowest hole of the bracket ①7. Place the tube ①6 over the bolt.

3. Select one scraper set:
 - 44 890-928C 25 SER AIR DESIGN IN SCRAPER
 Place the shoulder washer ③ on bolt ②3 with the larger diameter to the rear (toward bolt head). Place the left scraper blade ④ on the washer, followed by the right scraper blade ⑤.

4. Select one each:
 - 35 804-011C WASHER FLAT 3/8 USS PLT
 - 36 804-013C WASHER LOCK SPRING 3/8 PLT
 - 29 803-014C NUT HEX 3/8-16 PLT
 Place the flat washer ③5 on the bolt ②3, followed by the lock washer ③6 and nut ②9. Tighten bolt and nut to 3/8-16 GR5 torque spec. Make sure blades pivot freely.

5. Select the scraper spring ⑤. Connect the spring between the blades, using the small top holes.

6. Select two sets:
 - 26 802-172C HHCS 5/16-18X2 1/2 GR5
 - 33 803-043C NUT HEX WHIZ 5/16-18 PLT
 Insert the scraper assembly ⑤ between the middle four lower square holes ⑦ of the opener frame. Secure with bolts ②6 and whiz nuts ③3.

7. Re-mount the removed disc blade.

Callout, Part & Description cross-references are drawn from a Reference Page.
Preparation and Setup

Row-Pro™ Setup (Option)

The factory default setting for down-force is likely to differ from that required by your next field conditions. Before modifying the monitor setting for down-force, determine what actual down force is ideal for the initial use of the planter. One method of determining an initial setting involves operating in the field (without seeding).

1. Set planting depth at T-handles (page 62).
2. Review unit-mount coulter depth relative to opener disc. Adjust as needed (page 61).
3. Start with the the row unit down pressure springs in the lowest, or second-lowest notch (page 58).
 - Adjustment to the spring pressure may need to be made if the depth is reset or the closing wheel down pressure is adjusted.
4. Operate in the field for a short distance.
5. Evaluate the seed trench (page 59).
6. Adjust the springs until depth and closure are ideal. If the ideal setting seems to be in between two notch values, use the higher setting. Rows in wheel tracks may be higher still.
7. Engage the Row-Pro™ system. Set the initial target weight at 80 pounds.
8. Operate in the field. Evaluate furrow and closing. Adjust Row-Pro™ force setting for optimal results.
9. When verifying the final setting, and when planting, watch for Unable to Control alarms, which may indicate that the cams are a notch or more too high or too low.
 - If the IntelliAg® alarm indicates a value too high, reduce spring pressure. If the IntelliAg® alarm indicates a value too low, increase spring pressure.

The actual target rate is going to be different depending on the field conditions, soil type and other factors. The best way to gauge where you want the setting is to operate the system for a short time then go behind the planter and check the furrow.

a. Optionally operate the Row-Pro™ system in Monitor Only mode, and note the forces reported.
Operating Instructions

Refer to Figure 143

Row-Pro™ is a factory installed option for implements with 25-series openers that are equipped with DICKEY-john® IntelliAg®. It helps the spring down force system to maintain a user-determined, ideal weight for the side depth gauge wheels. Once the springs are set, Row-Pro™ pneumatically increases/decreases pressure on the openers.

The row units are already getting their down pressure from the springs on the parallel arms. Row-Pro only acts to vary that pressure as needed to maintain consistency in different soil conditions.

There is one cylinder 1 for each row located between the parallel arms. Based on loading on the side depth wheels, Row-Pro™ adjusts air pressure in the air cylinders.

Refer to Figure 144

There is one valve set per opener section, located in the center of the section. It allows each section to be controlled independently.

For twin row there are two valve sets 2 per section: one for the front openers and one for the rear openers.
Row-Pro™ Components

Refer to Figure 145 and Figure 146

The main systems of Row-Pro™ consist of:

1. **An air compressor system**: one 12VDC air compressor (11) with air tank (12), two extension cables (13), and one fuse assembly (14).
2. **A load sensing system**: DPLCM (Down Pressure Load Cell Module) (15) and the load cells (16).
3. **An adjusting system**: valves (17) and air cylinders (18).

Load Cell, DPLCM and Valves

The DPLCM (15) and valves (17) are mounted together on a plate and are connected to the DICKEY-john® Row-Pro™ wiring harness (19).

Two leads on the Row-Pro™ harness each connect to a load cell (16) which is located in the opener body (see fig.162). Four leads connect to the valve sets. There is one pair (one air intake, one exhaust) for each valve.

- For single row planters:
 - There is one load cell and one valve set per each opener section located at mid section.

- For twin row planters:
 - There are two load cells and two valve sets per each opener section located on the long and short center row unit of the section.

The Row-Pro™ harness connects to the planter's CANbus at connector ends (20).

The load cell provides feedback so the system can maintain the target pressures.

The DPLCM uses the readings from the load cell to regulate the air valves in order to increase or decrease pressure in the air cylinders.
Row-Pro™ Air Compressor System

Row-Pro™ Air Compressor

Refer to Figure 147

The 12VDC compressor requires both an electrical connection and a mounting location. It should be mounted in a location on the tractor or planter where most convenient. Mount where cool clean air can get to it. The battery connection is equipped with one large 60 amp spade fuse (automotive type).

If your tractor has an on-board engine driven compressor capable of 150 psi, it can be used instead of the one supplied with the planter. Hook the on-board compressor to the air tank with lines provided.

The air filter should be placed in the tractor cab where it can pull clean air from the cab. The remote air filter line should be as short as possible.

The air compressor pressurizes the air tank reservoir.

Row-Pro™ Air Tank

Refer to Figure 148

An air tank is provided and mounted on the wing. Open the air tank petcock once daily to drain water accumulation.

The air tank is used in conjunction with the air valves to maintain a set pressure value for the air cylinders.

Air valves are used to increase or decrease the amount of air provided to the air cylinders.

Row-Pro™ Air Tank Lines

Refer to Figure 149

The air tank has two lines. A 3/8 inch line attaches the compressor to the air tank. A 1/4 inch line splits at a T-junction and goes to the valves while the remaining end attaches to the compressor plate where it activates the pressure switches.

If an on-board compressor is used, plug/bypass the pressure switch branch.
Row-Pro™ Air Pressure Gauge

Refer to Figure 150

Row-Pro™ is designed to run at 150 psi. When the psi drops to 135 the compressor engages and builds back up to 150 psi. Duty cycle varies based on air usage.

Check for Air Leaks

Before going to the field check for air leaks.

1. Turn the compressor on to pressure up the primary system until it automatically shuts off. If the system loses pressure, check for leaks.

2. Use the Leak Test mode to cycle through the sections and check for leaks.
Row-Pro™ Adjustments

Refer to Figure 151

Load Cell Reading

These readings are displayed and adjusted from the IntelliAg® seed monitor console.

Control Mode: *Auto* is the normal running mode. *Manual* is used to control the valves only when the operator touches the increase or decrease icon on the work screen.

Monitor Only: This screen disables control, but still reports sensor feedback. From there, press the **Down Pressure Diagnostic** key and then press the **Float Mode ON** button to release all of the air from the system. Next, press the **Float Mode OFF** button. Stay on the **Diagnostic** screen and make a planting pass. Note the pressure displayed on the **Diagnostic** screen and then evaluate the seed trench. If the seed trench results are acceptable, use the displayed pressure as your target rate.

Front-Rear Linked: "Enabled" links the front and rear row units so that the same amount of pressure increase/decrease set at the screen is applied to front/rear row units. When "Disabled" - front/rear row units are not linked. Two sets of buttons appear on the screen that allow for adjustments of front and rear rates independently.

Target Rate: This is the desired down pressure on the side depth wheels. The target rate to be entered is the set rate (pounds) of the down force to determine how much pressure is applied. The system monitors and adjusts pressure to meet the defined rate set at this screen.

Pressure displayed on screen and target pressure both refer to the amount of weight carried by the side depth gauge wheels, and not overall row unit down pressure.

Inc/Dec: Sets the amount that the Target Rate is changed with each key press during planting operations.

![Figure 151](36544)

![Figure 152](34915)
Sensitivity Adjust: Determines how responsive the Controller is to input from the DPLCM. The range is from -10 to +10. Zero (0) is the average setting. Going below 0 decreases the reaction time. Going above 0 increases the reaction time.

Disable Down Pressure Modules: Modules interfacing with feedback sensors can be independently disabled so that down pressure to rear and/or front row units are not monitored or controlled. Modules that have been disabled are ignored by the system and will not report down pressure data or react to soil conditions.

(The IntelliAg® screen shows both row modules enabled 🟢. An unchecked box indicates disabled.)

If a section fails, that individual section can be turned on and off to locate the problem.

Refer to Figure 154

Reset Offset Value: Resetting Offset Values clears previous down pressure readings and resets values to zero.

1. At Main WORK SCRN press NEXT PAGE button.
2. Press MODULE CFG button.
3. At Module Configuration screen, press DPRESS SET.
4. At the Down Pressure Setting screen press OK to clear values.

IMPORTANT: The implement must be lifted and the implement lift switch in the up state before the OK button appears and values can be cleared.

- Make sure side depth wheels are all in the lowered position so there is no tension on the load cell. Values other than OFF or 1-6 mV may indicate stuck side depth wheels. If the reading is 0 mV, there may be a problem with load cell grounding. See “**Row-Pro™ Troubleshooting**”, page 178.

- **Initial Setup**: Zero out the load cell reading.
Row-Pro™ Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor won't turn on</td>
<td>Switch turned “off”.</td>
<td>Turn switch “on”.</td>
</tr>
<tr>
<td></td>
<td>Poor electrical connection.</td>
<td>Clean connections and reassemble.</td>
</tr>
<tr>
<td></td>
<td>Fuse blown.</td>
<td>Replace fuse (60A).</td>
</tr>
<tr>
<td>Compressor won’t turn off (runs continuously)</td>
<td>Section opener valves are installed in reverse.</td>
<td>Install opener valves correctly.</td>
</tr>
<tr>
<td></td>
<td>Stuck pressure switch(es).</td>
<td>Replace pressure switch(es).</td>
</tr>
<tr>
<td>Compressor cycles more than normal</td>
<td>Water build-up in air tank.</td>
<td>Drain tank to keep reserve volume at proper size.</td>
</tr>
<tr>
<td>Erratic down pressure reading</td>
<td>Poor electrical connection to load cell.</td>
<td>Clean connection and reassemble.</td>
</tr>
<tr>
<td></td>
<td>Load cell malfunction.</td>
<td>Replace load cell.</td>
</tr>
<tr>
<td>Persistent “high” alarm</td>
<td>Row unit spring tension too high.</td>
<td>Lower spring tension.</td>
</tr>
<tr>
<td></td>
<td>Air leak preventing cylinders from holding pressure.</td>
<td>Fix leak.</td>
</tr>
<tr>
<td>Persistent “low” alarm</td>
<td>Row unit spring tension too low.</td>
<td>Raise spring tension.</td>
</tr>
<tr>
<td></td>
<td>Air leak preventing cylinders from holding pressure.</td>
<td>Fix leak.</td>
</tr>
<tr>
<td>System won’t hold air pressure</td>
<td>Pinched/torn hose.</td>
<td>Replace hose.</td>
</tr>
<tr>
<td>Voltage reads “0” on monitor, or is unaffected by load on load cell</td>
<td>Signal wire grounded to frame.</td>
<td>Inspect for pinched or broken wiring harness between the load cell and DPLCM. Replace damaged wiring.</td>
</tr>
</tbody>
</table>

Row-Pro™ Maintenance

Check the tractor cab air filter as per manufacturer recommendation.
Yield-Pro® Planter Warranty

Great Plains (a division of Great Plains Manufacturing, Inc.) warrants to the original purchaser that this Great Plains unit will be free from defects in material and workmanship for a period of one year from the first use date when used as intended and under normal service and conditions for personal use; ninety days for custom/commercial or rental use.

A Second year limited warranty covers units utilizing Yield-Pro (YP) planter frames with 25 series row units and singulating type meters. The second year limited warranty covers parts only (personal usage only excluding labor and wear items) on the following: hitch main frame, gauge wheels, and markers, air box/manifold, Y-splitter tubes, and fan and housing, row unit weldments, unit mounted attachments, and frame mounted attachments.

This Warranty is limited to the replacement of any defective part by Great Plains and the installation by the dealer of any such replacement part. Great Plains reserves the right to inspect any equipment or part which are claimed to have been defective in material or workmanship.

The following items and/or conditions are **not covered under warranty**: failures resulting from abuse or misuse of the equipment, failures occurring as a result of accidental damage or acts of God, failures resulting from alterations or modifications, failures caused by lack of normal maintenance as outlined in the operator’s manual, repairs made by non-authorized personnel, items replaced or repaired due to normal wear (such as wear items and ground engaging components), repeat repair due to improper diagnosis or repair by the dealer, temporary repairs, service calls and/or mileage to and from customer location, overtime premium, or unit hauling expenses. The warranty may be voided if the unit is towed at speeds in excess of 20 miles per hour (32 kilometers per hour), or is used in soils with rocks, stumps, or other obstructions.

Great Plains reserves the right to make changes in materials or design of the product at any time without notice. The warranty shall not be interpreted to render Great Plains liable for damages of any kind, direct or consequential or contingent to property. Furthermore, Great Plains shall not be liable for damages resulting from any cause beyond its control. This warranty does not extend to crop loss, losses caused by planting or harvest delays or any expense or loss of labor, supplies, rental machinery, or for any other reason.

No other warranty of any kind whatsoever express or implied, is made with respect to this sale; and all implied warranties of merchantability and fitness for a particular purpose which exceed the obligations set forth in this written warranty are hereby disclaimed and excluded from this sale.

This warranty is not valid unless the unit is registered with Great Plains within 10

Great Plains | 411-242M | 2019-12-05

Table of Contents Index

143
Index

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS ... 87</td>
<td>back-flow 75</td>
<td>chain, safety 2</td>
</tr>
<tr>
<td>accessories 104</td>
<td>beans ... 65</td>
<td>chamber ... 39</td>
</tr>
<tr>
<td>adjustment cam 58</td>
<td>black .. 16</td>
<td>check for leaks 16</td>
</tr>
<tr>
<td>adjustment screw 53</td>
<td>blades, coulter 61</td>
<td>check valve, fan 41</td>
</tr>
<tr>
<td>air box ... 40</td>
<td>bleeding hydraulics 93</td>
<td>checklists 44</td>
</tr>
<tr>
<td>Air Box Residue Clean-Out 92</td>
<td>blockage 75</td>
<td>ending planting 44</td>
</tr>
<tr>
<td>Air Design 134</td>
<td>blue .. 16</td>
<td>field turns 44</td>
</tr>
<tr>
<td>air leak 79</td>
<td>boots ... 96</td>
<td>first pass 44</td>
</tr>
<tr>
<td>air pressure, normal 42</td>
<td>bridges ... 84</td>
<td>pre-operations 21</td>
</tr>
<tr>
<td>air release screen 40</td>
<td>bridging .. 75</td>
<td>pre-planting 15</td>
</tr>
<tr>
<td>air system, clean out 85</td>
<td>brush, seed tube 116</td>
<td>pressurization 48</td>
</tr>
<tr>
<td>AirPro® system 39</td>
<td>bushing, side gauge wheel 63</td>
<td>pre-usage 37</td>
</tr>
<tr>
<td>Al-120, console 13</td>
<td>cable ... 132</td>
<td>air system 38</td>
</tr>
<tr>
<td>alignment 132</td>
<td>canister, filter 96</td>
<td>electrical 38</td>
</tr>
<tr>
<td>amber reflector 8</td>
<td>canola .. 115</td>
<td>fertilizer 38</td>
</tr>
<tr>
<td>AMVAC Smartbox® 110</td>
<td>capacities 117</td>
<td>hydraulic 38</td>
</tr>
<tr>
<td>anchor pin 99</td>
<td>capacity, hoppers 35</td>
<td>mechanical 38</td>
</tr>
<tr>
<td>angle, side gauge wheel 63</td>
<td>carbide scraper 134</td>
<td>row cleaners 38</td>
</tr>
<tr>
<td>apron .. 3</td>
<td>cartridge, filter 96</td>
<td>row units 38</td>
</tr>
<tr>
<td>assistance 14</td>
<td>case drain 17</td>
<td>seed meters 38</td>
</tr>
<tr>
<td>attachments 13</td>
<td>CAUTION, defined 1</td>
<td>chemical containers 4</td>
</tr>
<tr>
<td>auger .. 34, 109</td>
<td>clean out 37, 42, 52, 96</td>
<td>chemicals 4</td>
</tr>
<tr>
<td>auxiliary hydraulic 34, 43</td>
<td>clean-out</td>
<td>clean out 37, 42, 52, 96</td>
</tr>
<tr>
<td>auxiliary hydraulic kit 109</td>
<td>hopper ... 85</td>
<td>chemical containers 4</td>
</tr>
<tr>
<td>AYP1625IR Cover 10</td>
<td>Clutch Folding Module 18</td>
<td>chemicals 4</td>
</tr>
<tr>
<td>Air Design 134</td>
<td>color code, hose 16</td>
<td>color code, hose 16</td>
</tr>
<tr>
<td>back-flow 75</td>
<td>connections, electrical 19</td>
<td>connections, electrical 19</td>
</tr>
<tr>
<td>beans ... 65</td>
<td>connector identification 19</td>
<td>connector identification 19</td>
</tr>
<tr>
<td>blue .. 16</td>
<td>contact wheel, ground 52</td>
<td>contact wheel, ground 52</td>
</tr>
<tr>
<td>bridges 84</td>
<td>contact, opener disk 62</td>
<td>contact, opener disk 62</td>
</tr>
<tr>
<td>bridging 75</td>
<td>containers, chemical 4</td>
<td>container, clean-out 87, 115</td>
</tr>
<tr>
<td>bridging, inlet 66</td>
<td>container, clean-out 87, 115</td>
<td>container, clean-out 87, 115</td>
</tr>
<tr>
<td>brush, seed tube 116</td>
<td>continuous flow 17</td>
<td>continuous flow 17</td>
</tr>
<tr>
<td>bushing, side gauge wheel 63</td>
<td>corn .. 65, 115</td>
<td>corn .. 65, 115</td>
</tr>
<tr>
<td>bushes, side wheel 95</td>
<td>corrosion, pump 45</td>
<td>corrosion, pump 45</td>
</tr>
<tr>
<td>bypass valve 18</td>
<td>cotton .. 115</td>
<td>cotton .. 115</td>
</tr>
<tr>
<td>CAB .. 130</td>
<td>coulter .. 55</td>
<td>coulter .. 55</td>
</tr>
<tr>
<td>calibration, speed 50</td>
<td>coulter blade 113</td>
<td>coulter blade 113</td>
</tr>
<tr>
<td>cam, row unit 58</td>
<td>coulter depth, UMC 61</td>
<td>coulter depth, UMC 61</td>
</tr>
<tr>
<td>canister, filter 96</td>
<td>coulters .. 13</td>
<td>coulters .. 13</td>
</tr>
<tr>
<td>canola ... 115</td>
<td>coulter, frame-mounted 56</td>
<td>coulter, frame-mounted 56</td>
</tr>
<tr>
<td>capacities 117</td>
<td>coulter, unit mounted 61</td>
<td>coulter, unit mounted 61</td>
</tr>
<tr>
<td>capacity, hoppers 35</td>
<td>coulter, unit-mounted 57</td>
<td>coulter, unit-mounted 57</td>
</tr>
<tr>
<td>carbide scraper 134</td>
<td>crushing hazard 8</td>
<td>crushing hazard 8</td>
</tr>
<tr>
<td>cartridge, filter 96</td>
<td>crusts .. 84</td>
<td>crusts .. 84</td>
</tr>
<tr>
<td>case drain 17</td>
<td>cylinder rods 15</td>
<td>cylinder rods 15</td>
</tr>
<tr>
<td>CAUTION, defined 1</td>
<td>cylinder symbols 16</td>
<td>cylinder symbols 16</td>
</tr>
<tr>
<td>CFM (Clutch Folding Module) 18</td>
<td>cylindar rods, greasing 46</td>
<td>cylindar rods, greasing 46</td>
</tr>
<tr>
<td>chamber, safety 2</td>
<td>danger ... 8</td>
<td>danger ... 8</td>
</tr>
<tr>
<td>chamber ... 39</td>
<td>daytime reflector 8</td>
<td>daytime reflector 8</td>
</tr>
<tr>
<td>check for leaks 16</td>
<td>DANGER, defined 1</td>
<td>DANGER, defined 1</td>
</tr>
<tr>
<td>check valve, fan 41</td>
<td>decal installation 7</td>
<td>decal installation 7</td>
</tr>
<tr>
<td>checklists 44</td>
<td>decals .. 1. 7</td>
<td>decals .. 1. 7</td>
</tr>
<tr>
<td>checklists 44</td>
<td>caution .. 11</td>
<td>caution .. 11</td>
</tr>
<tr>
<td>field turns 44</td>
<td>checklists 44</td>
<td>checklists 44</td>
</tr>
<tr>
<td>first pass 44</td>
<td>checklists 44</td>
<td>checklists 44</td>
</tr>
<tr>
<td>pre-operations 21</td>
<td>checklists 44</td>
<td>checklists 44</td>
</tr>
<tr>
<td>pre-planting 15</td>
<td>decal installation 7</td>
<td>decal installation 7</td>
</tr>
<tr>
<td>pressurization 48</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>pre-usage 37</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>flower ... 38</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>mechanical 38</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>row cleaners 38</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>row units 38</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>seed meters 38</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>suspending planting 44</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>chemical containers 4</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>chemicals 4</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>clean out</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>clean-out</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>hopper ... 85</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>meter .. 87</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>Clutch Folding Module 18</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>color code, hose 16</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>connections, electrical 19</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>connector identification 19</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>contact wheel, ground 52</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>contact, opener disk 62</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>containers, chemical 4</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>container, clean-out 87, 115</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>contamination 4</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>continuous flow 17</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>corn .. 65, 115</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>corrosion, pump 45</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>cotton .. 115</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>coulter .. 55</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>coulter blades 113</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>coulter depth, UMC 61</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>coulters .. 13</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>coulter, frame-mounted 56</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>coulter, unit mounted 61</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>coulter, unit-mounted 57</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>crushing hazard 8</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>crusts .. 84</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>cylinder rods 15</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>cylindar rods, greasing 46</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
<tr>
<td>cyan .. 32, 104, 109</td>
<td>Decal ... 7</td>
<td>Decal ... 7</td>
</tr>
</tbody>
</table>

Great Plains | 411-242M | 2019-12-05
F	**hitch**	105
fan	**hitching**	16
fan hoses	**hitching with hydraulic tongue**	18
fan motor	**hitch, 3-point**	18
fan speeds	**holding pin**	20
fertilizer	**hooks, transport**	22, 23
fertilizer drive lock up	**hopper**	31, 109
fertilizer pump system	**hopper sensor**	35
fertilizer rate	**hopper, weight**	31
fertilizer system	**hydraulic drive**	16, 17, 54
fertilizer system maintenance	**hydraulic flow**	42
fertilizer tanks	**hydraulic leaks**	2
Fert.Pump	**hydraulic motor seals**	17
field operation	**hydraulic system diagrams**	119
FILL DISK	**hydraulic tongue**	105
FILL METER	**hydraulic tongue hitching**	18
filter canister	**hydraulic, aux**	109
filter, in-line	**I**	
fire	**inflating tires**	5
first field use	**injury**	2
float, tongue	**inlet bridging**	66
fluted	**in-line filter**	37
fold circuit	**inoculated seed**	32
fold hydraulics, bleeding	**insecticide**	110
folding	**inside disk scraper**	114
folding speed, markers	**installation, console**	130
fork lift	**installation, scraper**	134
frame leveling	**Intelli-ag manuals**	13
frame-mounted coulter	**intended usage**	13
frame-mounted options	**K**	
fumes	**keeper, walkboard**	32
funnel	**Keeton**	134
furrow check	**Keeton seed firmer**	71, 116
furrow, 25P	**L**	
G	**latch, tongue**	24
gates, Y-tube	**leak checks**	16
gauge wheel	**leaks**	2, 93
gauge wheel scraper	**leak, air**	79
gauge wheels	**left-hand, defined**	13
gloves	**length, change at unfolding**	22
goggles	**level**	19, 131
gray	**level sensor**	32
grease cylinder rods	**leveling frame**	131
ground contact wheel	**lift assist cylinder locks**	70
Ground Speed Constant	**lift circuit**	16
H	**lift cylinder lock**	24, 83
harness	**lift hydraulics, bleeding**	93
hat	**lift, effect on pressure**	42
hazard	**Lift/Hitch switch**	26
headphones	**lights**	19, 30
height switch	**liquid fertilizer tank system**	109
height, tongue	**load control**	44
hex adjuster	**location**	
hex adjustment, side wheel	model number	14
hex head cam	serial number	14
high pressure fluid	**lock**	

M

Magnehelic®	**vertical**	100
maintenance		6, 83
manifold		37, 86, 106
manifold kits		106
manifold sensor		35
manifold, air box		40
manifold, split-air		39, 40
manuals		13
manual, about		13
manual, row cleaner		60
mark width		53
marker		8, 9, 10, 34, 94, 98, 102
marker adjustments		52
marker circuit		16
marker extension		133
marker hydraulics, bleeding		94
marker operation		43
marker speed		53
marker width		133
markers		30, 105
marker, effect on pressure		42
Marker/Fold switch		26
Martin row cleaner		60, 112
Q	D coupler	41
Q (Quick Disconnect)	41	
quick-connect ports	34	
quick-fill coupler	37	
railing, walkboard	34	
rain cover	65	
raising	26	
raising a row unit	70	
raising/lowering tongue	19	
rate, checking	50	
RC (Row Cleaner)	60	
reflector	7	
amber	8	
daytime	8	
red	7	
SMV	7	
reflectors	5	
repair	14	
re-phase	26, 27, 131	
rephase cylinders	27	
rephasing	23	
rephasing fold system	29	
rephasing lift system	27	
re-shipment	15	
respirator	3	
return line, fan	41	
reverse fan	41	
re-zero, sensor	48	
riders	4	
right-hand, defined	13	
roads	4	
rods, greasing	46	
rose, orientation	13	
rough terrain	5	
row cleaner	55, 57, 60, 110	
row cleaner manual	60	
row cleaner, unit-mount	112	
Row Failure	66	
row shut-off	65, 68	
row unit shank	70	
Row-Pro	135	
row-unit adjustments	57	
row-unit down pressure	58	
rpm, fan	42	
seed chain	280	
seed decals	7	
safety information	1	
safety symbol	1	
scraper	95, 134	
scraper installation	134	
scraper, disk, outside	114	
scraper, gauge wheel	64, 114	
seed auger	109	
seed discs	115	
seed firmer	57	
seed firmers	71, 116	
seed flap	97	
seed inlet shutter	65	
seed lubricant	104, 109	
seed monitor console	130	
seed pool	66	
Seed Rate Manual	13	
seed tube	40	
Seed-Lok®	72, 114, 116, 134	
sensor, hopper	35	
sensor, manifold	35	
sequence valve	43, 53	
serial number (yours)	14	
setup	15	
setup, initial	15	
shank, opener disk	95	
shank, row unit	70	
shank, side gauge wheel	63	
shims, side wheel	95	
shutdown	5	
shut-off, row	65	
shutter	75	
shutter, seed inlet	65	
side gauge wheels	63	
side gauge wheel, 25P	59	
side wheels, opener	95	
signal words	1	
single-arm row cleaner	112	
single-row	70	
skips	44, 48, 49	
slide roller	99	
sliding door	85	
slope, seed pool	66	
Slow Moving Vehicle	7	
Smartbox®	110	
SMV (Slow Moving Vehicle)	7	
soil firming	58	
soybeans	65, 115	
spacer washers	62	
specifications	117	
speed calibration	50	
speed limit	5	
SPLIT AIR -	49	
split air manifold	40	
SPLIT AIR +	49	
SprayTarget	107	
spreader	95	
springs, row unit	58	
spring, frame coulter	56	
spring, press wheel	73	
spring, row unit	58	
SRM	37	
sticker press wheel	73	
sticky conditions	72	
sticky soils	64, 114	
sticky treatments	80	
storage	5, 15, 46	
storage, lock-up pin	70	
straight coulter blades 113
strainer maintenance .. 96
stratification ... 37
strength rating ... 2
suffocation .. 84
sugar beets ... 115
sump return ... 41
sunflower ... 115
sway blocks ... 18
switch panel ... 130
switches
CMF ... 22
Clutch ... 26
Fert. Pump .. 26
Lift/Hitch .. 22, 23, 26
Marker/Fold .. 22, 25, 26
Master .. 22
switch, height ... 54
Symbol, Safety .. 1

T
T handle .. 62
tables
adjustments ... 47
air system elements .. 39
capacities ... 117
covered models .. 13
documents .. 13
hose color code ... 16
models covered ... 13
row unit cam .. 58
specifications ... 117
torque values ... 124
troubleshooting
general .. 80
population .. 76, 78, 142
seed delivery .. 79
UMC coulter depth .. 61
weights, planter .. 30
talc-graphite lubricant 104
talc-graphite .. 109
tank ... 108
tank system .. 106
tape, pipe ... 93
Terra-Tine ... 55, 110
tine ... 56, 60
tire pressure ... 11, 12
tire tracks ... 58
tires .. 5, 9, 11
tire, side wheel ... 95
tongue bypass valve 18
tongue circuit ... 16
tongue cylinder ... 45
tongue height .. 19
tongue latch ... 24
tongue, raising/lowering 19
tool, walkboard .. 58
top link .. 20
torque values ... 124
towing ... 2
tractor cab .. 130
tractor movement, at unfolding 22
transport ... 5
transport hooks ... 22, 23
transport lock .. 25, 28
transport locks .. 25, 26
transporting .. 30
treated seed .. 32
troubleshooting
Row-Pro .. 142
turbo ... 113
twin-row ... 70
U
UMC (unit-mount coulter) 61, 113
UMC-RC ... 112
UMC-RC (Unit-Mount Coulter RC) 60
UMRC .. 112
UMRC (Unit-Mount Row Cleaner) 60
underframe attachment kit 110
unfolding ... 22
unit-mount couler .. 61
unit-mount coulters 113
unit-mounted
row cleaner ... 60
URLs, tires .. 118
User Level 2 .. 13
V
vane ... 39
Vantage I ... 56, 106, 111
VeriFlow ... 107
virtual terminal .. 130
void .. 84
W
walkboard ... 31
walkboard keeper .. 32
walkboard railing .. 34
WARNING, defined ... 1
warranty ... 53, 143
weight
towing vehicle ... 5
weight, hopper .. 31
weight, planter .. 30
welding ... 6
wing alignment ... 132
wing locks ... 23, 30
wings ... 23, 131
winterizing .. 96
WSMT .. 40
Y
yellow .. 16
YP1225A ... 42
YP1625A ... 42
YP1625A-2420 ... 13
YP1625A-32TR ... 13
Y-tubes ... 85
Z
zone coulter ... 111

Numerics
110011501, manual ... 13
110011606, manual ... 13
113-010H, arm .. 127
113-013H, arm .. 127
113-014H, rest ... 126
113-031H, arm .. 127
113-032H, arm .. 127
113-480H, arm .. 127
113-481H, arm .. 127
113-794D, tube .. 128
113-798D, pin .. 127
12 gallons per acre 52
122-177D, tube .. 134
122-278S, scraper .. 114
129BXT824, bracket 134
150 bu ... 35, 109
150bu hopper ... 31
20 mph ... 5, 10
204-085M-A, manual 60, 112
204-131A, dribbler ... 107
204-132A, dribbler ... 107
204-376M, manual .. 56
204-496L, underframe 110
204-527A, UMC ... 113
204-531A, UMC ... 113
204-545A, UMC ... 113
204-549A, UMC ... 113
204-577A, FMC ... 111
204-579A, FMC ... 111
204-581A, FMC ... 111
204-625A, FMC ... 111
207-092S, UMRC .. 112
207-093S, UMRC .. 112
207-098S, UMRC .. 112
207-107A, UMRC .. 112
207-111A, UMRC .. 112
207-119A, UMRC .. 112
207-123A, UMRC .. 112
207-129A, UMRC .. 112
207-131A, Terra-Tines 110
207-135A, Terra-Tines 110
207-213K, UMRC .. 112
207-215K, UMRC .. 112
207-216K, UMRC .. 112
25 Series row unit .. 57
26in ... 131
3-Point hitch ... 18
3-point stands ... 45
30in rows ... 58
32 kph ... 5
401-429A, hitch .. 105
401-430A, hitch .. 105
401-435A, aux. hydraulic 109
401-625B, manual ... 13
401-625M, manual ... 13
<table>
<thead>
<tr>
<th>Item Code</th>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>401-625P</td>
<td>Manual</td>
<td>13</td>
</tr>
<tr>
<td>403-143K</td>
<td>82bu hopper</td>
<td>109</td>
</tr>
<tr>
<td>403-174K</td>
<td>150bu hopper</td>
<td>109</td>
</tr>
<tr>
<td>403-200A</td>
<td>SmartBox</td>
<td>110</td>
</tr>
<tr>
<td>403-201A</td>
<td>SmartBox</td>
<td>110</td>
</tr>
<tr>
<td>403-551D</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>404-093K</td>
<td>Seed-Lok®</td>
<td>116</td>
</tr>
<tr>
<td>404-194D</td>
<td>Scraper</td>
<td>114</td>
</tr>
<tr>
<td>404-195D</td>
<td>Scraper</td>
<td>114</td>
</tr>
<tr>
<td>405-032D</td>
<td>Adjuster</td>
<td>129</td>
</tr>
<tr>
<td>407-132A</td>
<td>Manifold</td>
<td>106</td>
</tr>
<tr>
<td>407-133A</td>
<td>Manifold</td>
<td>106</td>
</tr>
<tr>
<td>407-136A</td>
<td>Manifold</td>
<td>106</td>
</tr>
<tr>
<td>407-137A</td>
<td>Manifold</td>
<td>106</td>
</tr>
<tr>
<td>407-213A</td>
<td>Pump</td>
<td>108</td>
</tr>
<tr>
<td>407-214L</td>
<td>Tanks</td>
<td>108</td>
</tr>
<tr>
<td>407-441</td>
<td>Aux. hydraulic</td>
<td>109</td>
</tr>
<tr>
<td>42in</td>
<td></td>
<td>19, 131</td>
</tr>
<tr>
<td>46in</td>
<td></td>
<td>19, 131</td>
</tr>
<tr>
<td>5 REV TEST</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>802-024C</td>
<td>Bolt</td>
<td>134</td>
</tr>
<tr>
<td>802-091C</td>
<td>Bolt</td>
<td>129</td>
</tr>
<tr>
<td>802-130C</td>
<td>Bolt</td>
<td>127</td>
</tr>
<tr>
<td>802-130C</td>
<td>Shear bolt</td>
<td>94</td>
</tr>
<tr>
<td>802-172C</td>
<td>Bolt</td>
<td>134</td>
</tr>
<tr>
<td>802-258C</td>
<td>Bolt</td>
<td>129</td>
</tr>
<tr>
<td>803-014C</td>
<td>Nut</td>
<td>134</td>
</tr>
<tr>
<td>803-019C</td>
<td>Nut</td>
<td>127</td>
</tr>
<tr>
<td>803-020C</td>
<td>Nut</td>
<td>126</td>
</tr>
<tr>
<td>803-021C</td>
<td>Nut</td>
<td>128</td>
</tr>
<tr>
<td>803-043C</td>
<td>Nut</td>
<td>134</td>
</tr>
<tr>
<td>804-011C</td>
<td>Washer</td>
<td>134</td>
</tr>
<tr>
<td>804-013C</td>
<td>Washer</td>
<td>134</td>
</tr>
<tr>
<td>804-015C</td>
<td>Washer</td>
<td>126, 129</td>
</tr>
<tr>
<td>804-022C</td>
<td>Washer</td>
<td>128</td>
</tr>
<tr>
<td>804-029C</td>
<td>Washer</td>
<td>127</td>
</tr>
<tr>
<td>805-033C</td>
<td>Lock-up pin</td>
<td>70</td>
</tr>
<tr>
<td>805-058C</td>
<td>Cotter</td>
<td>127</td>
</tr>
<tr>
<td>806-110C</td>
<td>U-bolt</td>
<td>128</td>
</tr>
<tr>
<td>806-168C</td>
<td>U-bolt</td>
<td>126</td>
</tr>
<tr>
<td>817-794C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-795C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-796C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-797C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-798C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-800C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-811C</td>
<td>Container</td>
<td>87</td>
</tr>
<tr>
<td>817-836C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-838C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-841C</td>
<td>Blank disk</td>
<td>115</td>
</tr>
<tr>
<td>817-849C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-851C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-857C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-867C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>817-991C</td>
<td>Seed disk</td>
<td>115</td>
</tr>
<tr>
<td>818-339C</td>
<td>Decal</td>
<td>9</td>
</tr>
<tr>
<td>818-398C</td>
<td>Decal</td>
<td>11</td>
</tr>
<tr>
<td>818-578C</td>
<td>Decal</td>
<td>11</td>
</tr>
<tr>
<td>818-579C</td>
<td>Decal</td>
<td>10</td>
</tr>
<tr>
<td>818-580C</td>
<td>Decal</td>
<td>9</td>
</tr>
<tr>
<td>818-586C</td>
<td>Decal</td>
<td>9</td>
</tr>
<tr>
<td>829-143C</td>
<td>Nozzle</td>
<td>107</td>
</tr>
<tr>
<td>830-259C</td>
<td>Blade</td>
<td>113</td>
</tr>
<tr>
<td>832-052C</td>
<td>Orifice</td>
<td>107</td>
</tr>
<tr>
<td>832-053C</td>
<td>Orifice</td>
<td>107</td>
</tr>
<tr>
<td>832-054C</td>
<td>Orifice</td>
<td>107</td>
</tr>
<tr>
<td>838-265C</td>
<td>Reflector, amber</td>
<td>8</td>
</tr>
<tr>
<td>838-266C</td>
<td>Reflector, red</td>
<td>7</td>
</tr>
<tr>
<td>838-267C</td>
<td>Reflector, daytime</td>
<td>8</td>
</tr>
<tr>
<td>838-599C</td>
<td>Decal</td>
<td>8</td>
</tr>
<tr>
<td>838-995C</td>
<td>Decal</td>
<td>11</td>
</tr>
<tr>
<td>858-004C</td>
<td>Decal</td>
<td>10</td>
</tr>
<tr>
<td>858-011C</td>
<td>Decal</td>
<td>12</td>
</tr>
<tr>
<td>858-030C</td>
<td>Decal</td>
<td>9</td>
</tr>
<tr>
<td>890-796C</td>
<td>Keeton</td>
<td>116</td>
</tr>
<tr>
<td>890-840C</td>
<td>Keeton</td>
<td>116</td>
</tr>
<tr>
<td>891-259C</td>
<td>Brush</td>
<td>116</td>
</tr>
</tbody>
</table>