Read the operator manual entirely. When you see this symbol, the subsequent instructions and warnings are serious - follow without exception. Your life and the lives of others depend on it!

Illustrations may show optional equipment not supplied with standard unit or may depict similar models where a topic is identical.
Machine Identification

Record your machine details in the log below. If you replace this manual, be sure to transfer this information to the new manual.

If you or the dealer have added options not originally ordered with the machine, or removed options that were originally ordered, the weights and measurements are no longer accurate for your machine. Update the record by adding the machine weight and measurements with the option(s) weight and measurements.

<table>
<thead>
<tr>
<th>Model Number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Number</td>
<td></td>
</tr>
<tr>
<td>Machine Height</td>
<td></td>
</tr>
<tr>
<td>Machine Length</td>
<td></td>
</tr>
<tr>
<td>Machine Width</td>
<td></td>
</tr>
<tr>
<td>Machine Weight</td>
<td></td>
</tr>
<tr>
<td>Year of Construction</td>
<td></td>
</tr>
<tr>
<td>Delivery Date</td>
<td></td>
</tr>
<tr>
<td>First Operation</td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td></td>
</tr>
</tbody>
</table>

Dealer Contact Information

Name: ____________________________
Street: _________________________
City/State: _____________________
Telephone: ______________________
Email: __________________________
Dealer’s Customer No.: ____________

⚠️ WARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov
2SF24 and 2SF30
Important Safety Information .. 1
Safety Decals ... 5

INTRODUCTION .. 13
Description of Unit .. 13
Intended Usage ... 13
Models Covered .. 13
Document Family .. 13
Using This Manual .. 13
Owner Assistance .. 14
Further Assistance .. 14

Drill Preparation and Setup ... 15
Pre-start Checklist ... 15
Hitch Height Adjustment .. 15
Installing Drill Control Consoles ... 16
Bleeding Hydraulic Systems .. 17
Field-Lift Hydraulics ... 17
Raise-To-Fold Hydraulics ... 18
Fold Hydraulics .. 18
Marker Hydraulics .. 19
Frame Leveling Adjustment .. 20
Aligning Boxes ... 21

Operating Instructions ... 22
Pre-start Checklist ... 22
Tractor Requirements .. 22
Hitching Tractor to Drill .. 23
Operating Control Console ... 23
Operating Electric Clutch Consoles ... 24
Folding the Drill .. 24
Unfolding the Drill .. 25
Lifting the Drill in the Field ... 26
Field Operations ... 26
Opener Operation .. 27
Marker Operation .. 27
Shaft Monitor Operation .. 28
Electric Clutch Operation .. 28
Acremeter Operation ... 28
Transporting ... 29
Parking ... 29

Adjustments ... 30
No-Till Seeding ... 30
Coulter Adjustments ... 30
Hydraulic Depth Control ... 31
Electric Clutch Switch Adjustment ... 32
Pull Cable Adjustments ... 33
Weights .. 33
Opener Down-Pressure Adjustment 36
Press Wheel Adjustment .. 36
Setting the Seeding Rate ... 37

Troubleshooting .. 43
General Maintenance .. 45
Cylinder Lock Channels ... 46
Storage ... 46

Lubrication ... 47
Optional Attachments Lubrication ... 49

Options ... 51
Coulter Tines .. 51
Weight Brackets ... 51
Shaft Monitors ... 51
Markers .. 52
Small Seeds Attachment ... 52
Harrow Attachment ... 53
Rear Mount Boom .. 53
Seed Box Agitator ... 53
Seed-Lok Firming Wheels ... 54
Seed-Cup Plugs ... 54

Specifications and Capacities .. 55

Appendix .. 56
Electric Clutch Console and Wire Harness 56
Torque Values Chart for Common Bolt Sizes 57
Tire Inflation Chart ... 57

Great Plains Manufacturing, Inc. provides this publication “as is” without warranty of any kind, either expressed or implied. While every precaution has been
taken in the preparation of this manual, Great Plains Manufacturing, Inc. assumes no responsibility for errors or omissions. Neither is any liability assumed
for damages resulting from the use of the information contained herein. Great Plains Manufacturing, Inc. reserves the right to revise and improve its products
as it sees fit. This publication describes the state of this product at the time of its publication, and may not reflect the product in the future.
Trademark of Great Plains Manufacturing, Inc. include: AccuShot, Max-Chisel, Row-Pro, Singulator Plus, Short Disk, Swath Command, Terra-Tine, Ultra-Chisel, and X-Press.
Brand and Product Names that appear and are owned by others are trademarks of their respective owners.
Printed in the United States of America

3/5/19
Important Safety Information

Look for Safety Symbol

The SAFETY ALERT SYMBOL indicates there is a potential hazard to personal safety involved and extra safety precaution must be taken. When you see this symbol, be alert and carefully read the message that follows it. In addition to design and configuration of equipment, hazard control and accident prevention are dependent upon the awareness, concern, prudence and proper training of personnel involved in the operation, transport, maintenance and storage of equipment.

Be Aware of Signal Words

Signal words designate a degree or level of hazard seriousness.

DANGER, and the color Safety Red, indicate an imminent hazard which, if not avoided, will result in death or serious injury. This signal word is limited to the most extreme situations, typically for machine components that, for functional purposes, cannot be guarded.

WARNING, and the color Safety Orange, indicate a potential hazard which, if not avoided, could result in death or serious injury, and includes hazards that are exposed when guards are removed. It may also be used to alert against unsafe practices.

CAUTION, and the color Safety Yellow, indicate a potential hazard which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

Prepare for Emergencies

▲ Be prepared if a fire starts
▲ Keep a first aid kit and fire extinguisher handy.
▲ Keep emergency numbers for doctor, ambulance, hospital and fire department near phone.

Be Familiar with Safety Decals

▲ Read and understand “Safety Decals” on page 5, thoroughly.
▲ Read all instructions noted on the decals.
▲ Keep decals clean. Replace damaged, faded and illegible decals.
Wear Protective Equipment

- Wear protective clothing and equipment.
- Wear clothing and equipment appropriate for the job. Avoid loose-fitting clothing.
- Because prolonged exposure to loud noise can cause hearing impairment or hearing loss, wear suitable hearing protection such as earmuffs or earplugs.
- Because operating equipment safely requires your full attention, avoid wearing entertainment headphones while operating machinery.

Handle Chemicals Properly

Agricultural chemicals can be dangerous. Improper use can seriously injure persons, animals, plants, soil and property.

- Read and follow chemical manufacturer’s instructions.
- Wear protective clothing.
- Handle all chemicals with care.
- Avoid inhaling smoke from any type of chemical fire.
- Never drain, rinse or wash dispensers within 100 feet of a freshwater source, nor at a car wash.
- Store or dispose of unused chemicals as specified by chemical manufacturer.
- Dispose of empty chemical containers properly. Laws generally require power rinsing or rinsing three times, followed by perforation of the container to prevent re-use.

Avoid High Pressure Fluids

Escaping fluid under pressure can penetrate the skin, causing serious injury.

- Avoid the hazard by relieving pressure before disconnecting hydraulic lines.
- Use a piece of paper or cardboard, NOT BODY PARTS, to check for suspected leaks.
- Wear protective gloves and safety glasses or goggles when working with hydraulic systems.
- If an accident occurs, seek immediate medical attention from a physician familiar with this type of injury.
Use A Safety Chain

▲ Use a safety chain to help control drawn machinery should it separate from tractor drawbar.
▲ Use a chain with a strength rating equal to or greater than the gross weight of towed machinery.
▲ Attach chain to tractor drawbar support or other specified anchor location. Allow only enough slack in chain to permit turning.
▲ Replace chain if any links or end fittings are broken, stretched or damaged.
▲ Do not use safety chain for towing.

Keep Riders Off Machinery

Riders obstruct the operator’s view. Riders could be struck by foreign objects or thrown from the machine.
▲ Never allow children to operate equipment.
▲ Keep all bystanders away from machine during operation.

Use Safety Lights and Devices

Slow-moving tractors and towed implements can create a hazard when driven on public roads. They are difficult to see, especially at night.
▲ Use flashing warning lights and turn signals whenever driving on public roads.
▲ Use lights and devices provided with implement.

Transport Machinery Safely

Maximum transport speed for implement is 20 mph (30 kph). Some rough terrains require a slower speed. Sudden braking can cause a towed load to swerve and upset.
▲ Ensure towing vehicle weighs at least $\frac{2}{3}$ (67%) of gross implement weight.
▲ Do not exceed 20 mph (30 kph). Never travel at a speed which does not allow adequate control of steering and stopping. Reduce speed if drill is not equipped with brakes.
▲ Comply with state and local laws.
▲ Carry reflectors or flags to mark drill in case of breakdown on the road.

Shutdown and Storage

▲ Park on level ground.
▲ Unhitch and store the drill in an area where children normally do not play.
Tire Safety

Tire changing can be dangerous and should be performed by trained personnel using correct tools and equipment.

▲ When inflating tires, use a clip-on chuck and extension hose long enough for you to stand to one side—not in front of or over tire assembly. Use a safety cage if available.
▲ When removing and installing wheels, use wheel-handling equipment adequate for weight involved.

Practice Safe Maintenance

▲ Understand procedure before doing work. Use proper tools and equipment. Refer to this manual.
▲ Work in a clean, dry area.
▲ Lower the drill, put tractor in park, turn off engine, and remove key before performing maintenance. If work must be performed with implement raised, use blocks or jackstands rated for the drill weight.
▲ Make sure all moving parts have stopped and all system pressure is relieved.
▲ Allow drill to cool completely.
▲ Disconnect battery ground cable (-) before servicing or adjusting electrical systems.
▲ Welding: Disconnect battery ground. Avoid fumes from heated paint.
▲ Inspect all parts. Make sure parts are in good condition and installed properly.
▲ Remove buildup of grease, oil or debris.
▲ Remove all tools and unused parts from drill before operation.

Safety At All Times

Thoroughly read and understand the instructions in this manual before operation. Read all instructions noted on the safety decals.

▲ Be familiar with all drill functions.
▲ Operate machinery from the driver’s seat only.
▲ Do not leave drill unattended with tractor engine running.
▲ Do not stand between the moving tractor and drill during hitching.
▲ Keep hands, feet and clothing away from power-driven parts.
▲ Wear snug-fitting clothing to avoid entanglement with moving parts.
▲ Make sure all persons are clear of working area.
Safety Decals
Safety Reflectors and Decals
Your implement comes equipped with all lights, safety reflectors and decals in place. They were designed to help you safely operate your implement.

▲ Read and follow decal directions.
▲ Keep lights in operating condition.
▲ Keep all safety decals clean and legible.
▲ Replace all damaged or missing decals. Order new decals from your dealer. Refer to this section for proper decal placement.
▲ When ordering new parts or components, also request corresponding safety decals.

To install new decals:
1. Clean the area on which the decal is to be placed.
2. Peel backing from decal. Press firmly on surface, being careful not to cause air bubbles under decal.

Reflector: Slow Moving Vehicle (SMV)
(2N-2410 S/N C1977-)(2N-3010 S/N D2485-)
818-055C
At rear of drill when folded
1 total

Reflector: Slow Moving Vehicle (SMV)
818-055C
At rear of mainframe.
1 total
Reflectors: Red
818-230C
On side frames at inner ends of walkboard
2 total

Reflectors: Red
838-266C
On side frames at inner ends of walkboard
4 total

Reflectors: Daytime
838-267C
On side frames at inner ends of walkboard;
4 total
Reflectors: Amber
818-229C

On rear of walkboards at outer ends;
On side frames at outer ends of walkboard;
4 total

Reflectors: Amber
838-265C

On rear of walkboards at outer ends;
On side frames at outer ends of walkboard;
4 total

Reflectors: Amber
818-229C

On rear of walkboards at inner ends;
2 total

Reflectors: Amber
838-265C

On rear of walkboards at inner ends;
2 total
Danger: Chemical Hazard
838-467C

Inside drill box;
1 total

Warning: Pinching/Crushing
818-045C

2 total

Warning: Transport Lock
818-477C

2 total
Warning: Speed
818-188C

WARNING

EXCESSIVE SPEED HAZARD

To Prevent Serious Injury or Death:
- Do Not exceed 20 mph maximum transport speed. Loss of vehicle control and/or machine can result.

On tongue tube near hitch

1 total

Warning: Negative Tongue Weight
818-019C

WARNING

NEGATIVE TONGUE WEIGHT HAZARD

Negative tongue weight can cause immediate elevation of tongue when unhitching implement.

To prevent serious injury or death:
- Always be certain implement is hitched securely to tractor drawbar before raising.
- Lower implement BEFORE unhitching.

On tongue tube near hitch;

1 total

Warning: 30-Ft./24-Ft. Tongue Weight
818-475C (3010)/

818-476C (2410)

WARNING

Tongue weight imposed by this drill is 3700# empty, and 4500# loaded.

If this drill is loaded with grain and folded certain tractor drawbar capacities could be exceeded. You should check with tractor manufacturer for their recommended maximum drawbar capacity for your tractor before transporting this unit.

On tongue tube near hitch;

1 total
Caution: Lowering Drill
818-020C

CAUTION

TIRE DAMAGE HAZARD

To Avoid Machine Damage:
- Do Not lower drill in folded position - tire damage may result.

On tongue tube near hitch;

1 total

General Caution
818-587C

CAUTION

- Read Owner’s Manual before using machine.
- Stand clear when folding and unfolding markers.
- Stand clear when raising and lowering machine.
- Keep all safety shields and devices in place.
- Keep hands, feet, and clothing away from moving chains and sprockets.
- Never ride on machine.
- Always lower or properly support machine BEFORE servicing.
- Escaping hydraulic fluid can cause serious injury.
- Review safety instructions with all operators annually.

On tongue tube near hitch;

1 total

Caution: Tires Not A Step
818-398C

CAUTION

- To Avoid injury from Unsecured Transport Tires:
 Never stand or use transport tires as a step.
 Tires will contact the ground and will roll away.

On side frames above tires;

2 total
Caution: Tire Pressure and Torque 838-092C

![CAUTION]

To Avoid Injury or Machine Damage from Improper Tire Inflation or Torquing of Wheel Bolts:

- Maximum inflation pressure of tires is 60 psi.
- Torque wheel bolts to 90-105 ft-lb.

Gauge wheel with 265/70B16.5 NHS skid steer tire;
4 total

Caution: Tire Pressure and Torque 818-855C

![CAUTION]

To Avoid Injury or Machine Damage from Improper Tire Inflation or Torquing of Wheel Bolts:

- Maximum inflation pressure of tires is 36 psi.
- Torque wheel bolts to 90 lb-ft.

Gauge wheel with 11L-15 X 8 PLY ribbed tire;
4 total

Caution: Tire Pressure and Torque 838-426C

![CAUTION]

To Avoid Injury or Machine Damage from Improper Tire Inflation or Torquing of Wheel Bolts:

- Maximum inflation pressure of tires is 60 psi.
- Torque wheel bolts to 105 ft-lb.

Gauge wheel with 395/55B16.5 NHS skid steer tire;
Transport wheel with 395/55B16.5 NHS skid steer tire;
4 total
Caution: Tire Pressure and Torque
838-259C

CAUTION

To Avoid Injury or Machine Damage from Improper Tire Inflation or Torquing of Wheel Bolts:
- Maximum inflation pressure of tires is 80 psi.
- Torque wheel bolts to 170 lb-ft.

Transport wheel with 12.5-15 20 ply ribbed tire;
4 total

Caution: Tire Pressure and Torque
838-092C

CAUTION

To Avoid Injury or Machine Damage from Improper Tire Inflation or Torquing of Wheel Bolts:
- Maximum inflation pressure of tires is 80 psi.
- Torque wheel bolts to 90-105 ft-lb.

Auxiliary axle;
4 total

NOTICE: No Petroleum Products
858-679C

NOTICE

DO NOT USE PETROLEUM BASED PRODUCTS ON FEEDER CUP OR SMALL GRASS CUP COMPONENTS.

Small seed option;
2 to 4 total
Great Plains welcomes you to its growing family of new product owners. This implement has been designed with care and built by skilled workers using quality materials. Proper assembly, maintenance and safe operating practices will help you get years of satisfactory use from the machine.

Description of Unit
The two-section folding no-till drill is a towed seeding implement for no- or minimum-till soil conditions. The drill is equipped with two hydraulic circuits. One is used to raise and lower the drill for field operations. A separate electro-hydraulic circuit lifts, locks and folds the implement for transport. An in-cab control console allows the operator to switch between functions on the electro-hydraulic circuit. The drill is outfitted with coulters and double-disk openers. The openers are mounted on parallel arms. Press wheels follow the opener disks to firm the seedbed and control seeding depth.

Intended Usage
This machine is intended for use in minimum- or no-till applications.

Models Covered
2N-2410-281028 row, 10-inch spacing
2N-2410-360836 row, 8-inch spacing
2N-2410-387538 row, 7.5-inch spacing
2N-3010-361036 row, 10-inch spacing
2N-3010-440844 row, 8-inch spacing
2N-3010-487548 row, 7.5-inch spacing

Document Family
196-126M - 2N-2410 and 2N-3010 Operator Manual (this document)
196-126B - Seed Rate Chart
196-126P - Parts Manual

Using This Manual
This manual will familiarize you with safety, assembly, operation, adjustment, troubleshooting and maintenance. Read this manual and follow the recommendations to help ensure safe and efficient operation.

This manual is current at printing. Some parts may change to assure top performance.

Definitions
Right and left as used in this manual are determined by facing the direction the machine will travel while in use unless otherwise stated.

NOTICE
A crucial point of information related to the preceding topic. For safe and correct operation, read and follow the directions provided before continuing.

NOTE: Useful information related to the preceding topic.

Manual Family QRC
The QR Code (Quick Response) to the left will take you to this machine’s family of manuals. Use your smart phone or tablet to scan the QR Code with an appropriate App to begin viewing.

Dealer QRC
The QR Code (Quick Response) to the left will take you to available dealers for Great Plains products. Refer to the Parts Manual QR Locater for detailed instructions.
Owner Assistance

If customer service or repair parts are needed contact your Great Plains dealer. They have trained personnel, parts and service equipment specially designed for Great Plains products.

Your machine’s parts were specially designed and should only be replaced with Great Plains parts. Always use the serial and model number when ordering parts from your Great Plains dealer. The serial number plate is located on the outside end of the left drill box as shown in Figure 2.

Further Assistance

Great Plains Manufacturing, Inc. and your Great Plains dealer want you to be satisfied with your new product. If for any reason you do not understand any part of this manual or are otherwise dissatisfied, please take the following actions first:

1. Discuss the matter with your dealership service manager. Make sure they are aware of any problems so they can assist you.
2. If you are still unsatisfied, seek out the owner or general manager of the dealership.

If your dealer is unable to resolve the problem or the issue is parts related, please contact:

Great Plains Service Department
1525 E. North St.
P.O. Box 5060
Salina, KS 67402-5060

Or go to and follow the contact information at the bottom of your screen for our service department.
Drill Preparation and Setup

This section will help you prepare your tractor and drill for use. The drill hitch must be adjusted to match drawbar height, and the drill control console must be installed in your tractor.

This section also covers bleeding the drill hydraulics and making drill frame and box adjustments. As the operator, you may need to perform these functions after drill repair. Before operating the drill, check that the hydraulic systems are free or air, the frame is level, and boxes are aligned.

Pre-start Checklist
1. Read and understand “Important Safety Information,” page 1.
2. Check that all working parts are moving freely, bolts are tight, and cotter pins are spread.
3. Check that all grease fittings are in place and lubricated. Refer to Lubrication, page 47.
4. Check that all safety labels and reflectors are correctly located and legible. Replace if damaged. See Safety Decals, page 5.
5. Inflate tires to pressure recommended and tighten wheel bolts as specified. See Tire Inflation Chart page 57.

Hitch Height Adjustment
Refer to Figure 3
For proper operation, the drill tongue must run parallel to the ground in field position. Follow these instructions to adjust the drill hitch to match your tractor drawbar height.
1. Check the distance from under the tongue to the ground as shown in Figure 3. Using the drill jack, adjust the tongue up or down until the distance is about 28 inches.
2. Back the tractor drawbar up to the drill hitch. Determine how much adjustment is needed for the drill to match drawbar height.
3. Unbolt the hitch from the tongue. Bolt the hitch so the drill matches drawbar height. Keeping in mind your drill size, refer to Figure 4 or Figure 5 for the different ways you can bolt the hitch and the resulting hitch heights.
4. Hitch the drill to the tractor using a hitch pin at least one inch in diameter. Install a retaining clip on the hitch pin to prevent it from working up.

A clevis-style hitch, Great Plains part number 196-136H, is available through your Great Plains dealer.

NOTICE

When hitching the drill to a different tractor, check for differences in drawbar heights and re-adjust the drill hitch accordingly.

Installing Drill Control Consoles

1. Mount the control boxes at a convenient location in the tractor cab. Connect the 12-foot extension cable to the pin connector on the back of the control box. Route the cable to the tractor drawbar area. Secure the cable to avoid damage.

2. Connect the power cords to a 12-volt power source on the tractor. The polarity of the power supply is very important. The red wire must be connected to the positive (+) battery terminal. The white wire must be connected to the negative (-) battery terminal.

To help with console and wire harness installation refer to diagram on page 56.
Bleeding Hydraulic Systems

A hydraulic system with air in the circuit will move in jerky, uneven motions. If your hydraulics have not been properly bled or you replace a hydraulic component, bleed the hydraulics.

Field-Lift Hydraulics

The field-lift system is equipped with four rephasing-type hydraulic cylinders that require a special procedure for bleeding air. Read and follow the procedure carefully. Air in the system will cause uneven seeding across the drill. Do not loosen hose fittings in order to bleed air from this system.

WARNING

Escaping fluid under pressure can have sufficient pressure to penetrate the skin causing serious injury. Avoid the hazard by relieving pressure before disconnecting hydraulic lines. Use a piece of paper or cardboard, NOT BODY PARTS, to check for leaks. Wear protective gloves and safety glasses or goggles when working with hydraulic systems. If an accident occurs, see a doctor immediately.

CAUTION

This drill has a negative tongue weight when unfolded and raised. Be certain that the drill is hitched securely to your tractor drawbar and the hitch safety chain is securely attached to the drill.

WARNING

Never allow anyone under the drill when fittings are opened. Escaping fluid may allow the drill to drop suddenly.

1. Check that the tractor reservoir is filled to the proper level. It will take 4 gallons to charge the field-lift cylinders.
2. Put the tractor in park and set the parking brake. If your tractor does not have these features, block wheels to prevent tractor from rolling.
3. Raise and support the main frame and outside ends of boxes just high enough to take the weight off all four field-lift cylinders.
4. With the drill blocked and supported, unpin both ends of all four field-lift cylinders. The field-lift cylinders are located on the wing gauge wheels and the main-frame transport wheels. Remove and safely position the cylinders so the rod ends are higher than the base ends. Check that there is enough room for the cylinder rods to fully extend without contacting anything.
5. With the tractor at idle, engage the lift-hydraulics lever. When the cylinders for both gauge wheels have completely extended, hold the lever on for one minute.
6. Retract the cylinder rods. Extend the rods again and hold the lever on for one more minute. Repeat this step two more times to completely bleed the system.
7. Retract and reattach the hydraulic cylinders.
8. Recheck the tractor hydraulic reservoir level and add clean fluid as necessary.

Transport-Lock Hydraulics

The transport-lock cylinders are not rephasing. The two transport-lock cylinders are on each side of the main frame above the transport axle pivot tubes. Follow these steps to properly bleed the transport-lock hydraulics.

1. Check that the tractor reservoir is filled to the proper level. It will take about one gallon to charge the transport-lock cylinders.
2. Raise the drill to field position and support the main frame.
3. Select the locks system on the control console. Retract the lock cylinders completely.
4. Loosen the connection between the hose and base-end tee fitting on the left lock cylinder. With the tractor at idle slowly work the remote lever to feed oil to the base end of the lock cylinders. Stop when you see oil coming from around the fitting. Do not attempt to fully extend the lock cylinders when bleeding the base ends.
5. With the cylinders completely extended, repeat step 4 for the rod-end fitting.
6. Recheck the tractor reservoir and add clean fluid as necessary.
7. Retract and extend the lock cylinders several times to expel most air from the system. The remaining air will be expelled gradually during day-to-day operations.
8. Recheck the tractor hydraulic reservoir and add clean fluid as necessary.

NOTICE

To prevent trapped air pockets, the rod end must be higher than any other part of the cylinder.
Raise-To-Fold Hydraulics

The raise-to-fold cylinders are double acting but not rephasing. There are four cylinders in the raise-to-fold system. Two are on the tool bar, and two are on the tongue. Follow these steps to properly bleed the raise-to-fold hydraulics.

1. Check that the tractor reservoir is filled to the proper level. It will take 3.4 gallons to charge the raise-to-fold cylinders.
2. Select the raise-to-fold system on the control console.
3. Check that the drill is unfolded and resting safely on the ground.
4. Disconnect the rod-end clevis of both tool-bar cylinders and both tongue cylinders. Support the cylinders so the rods may extend and retract freely.
5. Retract the tongue cylinders completely. This will also fully extend the tool-bar cylinders.
6. Loosen the hose-end fitting coming into the tee on the base end of the left tongue cylinder.

NOTICE

Do not attempt to bleed an O-ring fitting or O-ring damage may occur.

7. Slowly work the remote lever to feed oil to the base end of the tongue cylinders. Stop when you see oil coming from around the fitting. Do not attempt to extend the tongue cylinders while bleeding the base ends.
8. Loosen the hose-end fittings at the tee on rod ends of the tool-bar cylinders. Slowly work lever which feeds oil to the rod end of the tool-bar cylinders. Stop when you see oil coming from around the fittings. Do not attempt to retract the tool-bar cylinders while bleeding the rod ends.
9. Fully extend the tongue cylinders and retract the tool-bar cylinders.
10. Loosen the hose-end fitting at the tee on the rod end of the left tongue cylinder.

NOTICE

Do not attempt to bleed an O-ring fitting or O-ring damage may occur.

11. Slowly work the lever in the opposite direction to feed oil to rod end of the tongue cylinders. Stop when you see oil coming from around the fitting. Do not attempt to retract the tongue cylinders while bleeding the rod ends.
12. Loosen the hose-end fittings at the tee coming from the base ends of the tool-bar cylinders. Slowly work the lever to feed oil to the base end of the tool-bar cylinders. Stop when you see oil coming from around the fittings. Do not attempt to extend the tool-bar cylinders while bleeding the base ends.
13. Extend and retract the cylinders several times to expel most air from the system. The remaining air will gradually be pushed to the tractor during day-to-day operations.
14. Re-pin the tongue and tool-bar cylinders. Raise and lower the wings several times to check for proper operation. If movement is erratic, repeat bleeding operation.
15. Recheck the tractor hydraulic reservoir level and add clean fluid as necessary.

Fold Hydraulics

The fold cylinders are not rephasing. The two fold cylinders connect the main frame and drill boxes. Follow these steps to properly bleed the fold hydraulics.

NOTICE

Check that the transport-lock and raise-to-fold systems are bled and completely operational before working with the fold hydraulics.

1. Make sure the tractor hydraulic fluid reservoir is filled to the proper level. It will take about two gallons to charge the fold cylinders.
2. With the boxes unfolded unpin the rod-end clevis and support the fold cylinders so they can be extended and retracted.
3. Select the fold system on the control console. Retract the fold cylinders completely.
4. Loosen the connection between the hose-end and base-end tee fitting on the left fold cylinder.
5. With the tractor at idle slowly work the tractor lever to feed oil to the base end of the fold cylinders. Stop when you see oil coming from around the fitting. Do not attempt to extend the fold cylinders when bleeding base ends.
6. With cylinders completely extended, repeat the procedure for the hose connection at the rod end.
7. Retract and extend the cylinders several times to expel most air from this system. The remaining air will gradually be pushed to the tractor during day-to-day operations.
8. Recheck the tractor reservoir level and add clean fluid as necessary.
Marker Hydraulics

CAUTION

Never allow anyone near the drill when cycling the markers.

1. Make sure the tractor hydraulic fluid reservoir is filled to the proper level. It will take one gallon to charge the dual marker cylinders.

2. With the drill unfolded and lowered, turn marker switch on the control console to the left marker position.

3. With the marker unfolded, crack the hydraulic hose fitting located at the base end of the left marker cylinder.

4. With the tractor at idle slowly work the tractor remote lever to feed oil to the base end. Stop when you see oil coming out around the hose ends. Tighten the hose-end fittings.

5. Repeat step 3 and 4 for the hose-end fitting at the rod end of the cylinder.

6. If dual markers are used, repeat steps 2, 3 and 4 for the right marker cylinder.

NOTICE

Leave the control console switch in the left marker position when bleeding the right marker cylinder. Both markers are controlled by the left marker switch if your markers have a sequence valve.

7. Fold and unfold the marker slowly to work all the air out of your marker hydraulics.

NOTICE

JIC fittings do not require high torque. JIC and O-ring fittings do not require sealant. Always use liquid pipe sealant when adding or replacing pipe thread fittings. To avoid possible danger of cracking hydraulic fittings from over tightening, do not use plastic sealant tape.
Frame Leveling Adjustment

Periodic frame leveling should not be necessary, but if you are having trouble maintaining equal coulter depth across the drill, check that the frame is level. When the drill is level, the box frames will be the same distance from the ground at both ends of the drill.

Complete the steps under *Bleed the Fold Hydraulics*, page 18, before proceeding.

Refer to Figure 6

1. Locate the threaded eye bolt at the base end of the gauge-wheel cylinders (1). The eye bolt is locked in place by a jam nuts. Observe the amount of thread exposed above the upper nut and below the lower nut. If the exposed threads are roughly equal, no initial adjustment is needed. Go to step 3.

2. If the exposed threads above and below the nuts are not equal, loosen and adjust the jam nuts until the exposed threads are within 3/8 inch of each other. Repeat for other end of drill.

3. Move the drill to a level area. With the drill unfolded, check that the tool-bar cylinders are completely extended. Raise the drill to its highest position with the field-lift cylinders. With the tractor idling, rephase the cylinders by holding the hydraulic lever on for an additional 30 seconds. Immediately lower the boxes until the coulters and openers are just ready to touch the ground.

4. Move the gauge-wheel eye bolts (1) in or out until the frames are level. When the frames are level, the openers on the outside end of the drill will be the same height as the center openers.

 Eye-bolt adjustments are easier if the drill is first lowered to the ground to remove some of the force on the cylinders.

5. Repeat the steps above until the drill is level end-to-end when drilling in actual seeding conditions.
Aligning Boxes

Refer to Figures 7 and 8

For proper alignment, the outside ends of the drill boxes must be 1 to 1-1/2 inches ahead of the inside ends. Follow these steps to check box alignment and adjust as necessary.

1. With the drill unfolded and lowered, pull forward a few feet with the openers in the ground.

2. Extend a string line to the outer ends of the wing boxes as shown in Figure 8. Measure from the string line to each box as shown. For each box, measurement A should be 1 to 1-1/2 inches greater than measurement B.

3. If adjustment is needed, write down how many inches the box should be moved to be within the 1-to-1 1/2-inch tolerance mentioned above. Also note the direction you need to move the outside end of the box—forward or back.

4. Make adjustments at the box end of each pull cable as shown in Figure 8. Loosen the jam nuts on the adjustment trunnion screw. Turn the screw in or out to move the box end forward or backward as required. Tighten the jam nuts.

5. Pull ahead slightly and check the box alignment. Re-adjust the pull cables if necessary.
Operating Instructions

This section will help you prepare the tractor and drill for use. It will also give you general operating procedures. Experience, machine familiarity and the following information will lead to efficient operation and good working habits. Always operate farm machinery with safety in mind.

Pre-start Checklist

2. Lubricate the drill as indicated under Lubrication, page 47.
3. Check all tires for proper inflation as indicated on Tire Inflation Chart, page 57.
4. Check all bolts, pins and fasteners. Torque as specified on Torque Values Chart, page 57.
5. Check the drill for worn or damaged parts. Repair or replace them before going to the field.
6. Check hydraulic hoses, fittings and cylinders for leaks. Repair or replace them before going to the field.
7. Check disk scrapers for proper adjustment. Refer to Disk Scraper Adjustment, page 39.
8. Check that the drive-clutch linkage is operating properly. The clutch jaws should be fully engaged with the drill in seeding position. When the drill is fully raised the clutch jaws should be completely separated.
9. Rotate both gauge wheels to see that seed cups and drive are working and free from foreign material.

Tractor Requirements

Recommended Minimum Tractor Size
- 24-foot drill - 200 to 250 horsepower
- 30-foot drill - 250 to 300 horsepower

NOTE: When determining tractor size, soil type, terrain and tillage practices must be considered.

WARNING

Towing the drill at high speeds or with a vehicle that is not heavy enough can lead to loss of vehicle control. Loss of vehicle control can lead to serious road accidents, injury and death. To reduce the hazard:
- Do not exceed 20 mph.

Hydraulics

Your tractor must have two remote outlets.

Safety Lights
Your tractor must be wired for the standard 7-pin electrical connector. If your tractor is not equipped with this connector, consult your dealer for installation.

Hitching Tractor to Drill

Refer to Figure 9

1. Use the drill jack to raise or lower the tongue as needed. Hitch the drill to the tractor using a hitch pin of adequate strength (at least one inch in diameter).

2. Install a retaining clip on the hitch pin to prevent it from working up. Securely attach drill safety chain to tractor drawbar.

WARNING

Escaping fluid under pressure can have sufficient pressure to penetrate the skin causing serious injury. Avoid the hazard by relieving pressure before disconnecting hydraulic lines. Use a piece of paper or cardboard, NOT BODY PARTS, to check for leaks. Wear protective gloves and safety glasses or goggles when working with hydraulic systems. If an accident occurs, see a doctor immediately.

3. Connect hydraulic hoses to tractor remotes. One pair of hoses is for the field-lift cylinders. The other pair is for raise-to-fold, transport-lock, fold and marker cylinders.

4. Plug the control-console cable to the drill harness. Plug the drill light cable to the tractor.

5. Crank the jack until tongue weight is resting on the tractor drawbar. Unpin the tongue jack from the hitching stub. Pin the jack to the stub on top of the tongue as shown in Figure 9.

Operating Control Console

Your drill is equipped with a control console that is mounted in the tractor cab. Refer to *Installing Drill Control Consoles*, page 16. The console is designed to control drill folding and optional markers, electric clutches and shaft monitors. The console has a master switch that must be on when operating any of these systems.

The raise-to-fold, transport locks and fold switches are operated independently. Turn only one of these switches on at one time. During field operations, turn all three switches off.

To operate markers, turn the marker switch to the left position during field operation. Turn this switch to the center position (off) when folding or in transport.
Operating Electric Clutch Consoles

To operate electric clutches, turn either the left or right clutch switch to the off position to shut down the seeding from the corresponding box. Turn the electric clutch switches off when folding or in transport.

To operate shaft monitors, turn the shaft monitor switch on during field operation and off when folding or transporting.

Folding the Drill

CAUTION

To prevent serious injury or death:

- Always use transport locks when drill is folded.
- Fold only if hydraulics are bled free of air and fully charged with hydraulic oil.
- Stay away from frame sections when they are being raised or lowered.
- Keep away and keep others away when folding or unfolding the drill.

Fold the drill on level ground with the tractor in neutral. If your drill has markers, be certain they are folded and their control switches are off before folding. If your drill has a harrow attachment, fold the attachment before folding the drill. Refer to *Folding Harrow Attachment*, page 25.

1. Raise drill with field-lift cylinders until cylinders are fully extended.
2. Turn on master power switch on control console. Turn on raise-to-fold switch.
3. Work tractor hydraulic lever to raise drill into fold position.
4. Turn off raise-to-fold switch. Turn on transport-locks switch.
5. Work tractor hydraulic lever to extend lock cylinders. If lock cylinders will not extend, drill is not fully raised; repeat steps 1 through 3.
6. Turn off transport-locks switch. Turn on fold switch.
7. Work tractor hydraulic lever to slowly retract fold cylinders.

NOTICE

Never attempt to fold without first operating the raise-to-fold and transport-lock systems. Otherwise, serious equipment damage will occur.
Once drill is folded over transport carriers, turn off fold switch. Turn on raise-to-fold switch.
Work tractor hydraulic lever to lower boxes onto carriers. Turn off raise-to-fold switch.

Folding Harrow Attachment
Before hydraulically folding drill, fold optional coil-tine harrow as explained below.
Fold right-hand harrow assembly up until locking pin engages into the first slot on harrow bracket.
Fold left-hand harrow assembly up until locking pin engages into the second slot on harrow bracket.

Unfolding the Drill
This drill has negative tongue weight when unfolded and raised. Be certain the drill is hitched securely to your tractor drawbar and the hitch safety chain is securely attached to the tractor before raising or unfolding the drill.

CAUTION
To prevent serious injury or death:
Always use transport locks when drill is folded.
Fold only if hydraulics are bled free of air and fully charged with hydraulic oil.
Stay away from frame sections when they are being raised or lowered.
Keep away and keep others away when folding or unfolding drill.
Unfold the drill on level ground with the tractor transmission in neutral.
1. On control console, turn on raise-to-fold switch.
2. Work tractor hydraulic lever to raise boxes off transport carriers.
3. Turn off raise-to-fold switch. Turn on fold switch.
4. Work tractor hydraulic lever to slowly unfold drill boxes.
5. When drill is unfolded completely, turn off fold switch.
6. Work tractor hydraulic lever to retract transport-lock cylinders.
 ⭐ If transport-lock cylinders will not retract, drill is not raised fully. Make sure field-lift cylinders and transport-lift cylinders are extended fully.
7. When transport-lock cylinders are retracted, turn off transport-lock switch. Turn on raise-to-fold switch.
8. Work tractor hydraulic lever to lower drill.
9. Turn off raise-to-fold switch.
Lifting the Drill in the Field

Your drill is raised for field operations with hydraulic cylinders in a master-slave configuration. Over a period of normal use the cylinders may get out of phase. This will cause one side of the drill to run higher. To rephase the cylinders:

1. Raise the drill completely with the field-lift cylinders. Hold the hydraulic lever on for several seconds until all cylinders are fully extended. This should be done every time the implement is raised out of the ground.

2. When all field-lift cylinders are fully extended, momentarily reverse the hydraulic lever to retract the system 1/2 inch. This will help maintain levelness.

Air in the field-lift system will cause jerky and uneven cylinder movement. Follow procedures under Bleeding Hydraulic Systems, page 17, to properly bled air from the system.

Field Operations

For normal seeding operations:

1. Hitch drill to a tractor with sufficient weight and horsepower. Refer to Tractor Requirements, page 22, and Hitching Tractor to Drill, page 23.

2. Perform all checks listed on Pre-start Checklist, page 22.

3. Lower the drill into seeding position.

4. Observe the drill from the side. Check that the tongue is running level with the ground. If not, refer to Hitch Height Adjustment, page 15.

5. Set the seeding rate for both boxes. Refer to Setting the Seeding Rate, page 37. Make sure the seeding rate is the same across the drill.

6. Load boxes with clean seed.

7. Record the acremeter readout. The acremeter is mounted on the outside end of the left gauge-wheel shaft. Subtract this initial readout from later readings to calculate area drilled.

8. Pull forward, lower drill, and begin seeding.

9. Always lift the drill out of the ground when turning at row ends and for other short turns. Seeding will stop automatically as the drill is raised in the field.

This drill is offered in three different row spacings. Some of the drill boxes do not have the same number of seed cups between each internal box divider. The section with the largest number of cups will empty sooner.
Opener Operation

Never back up with openers in ground. If you do, check all openers to be sure none are clogged or damaged.

For information on setting seed depth and opener adjustments, see *No-Till Seeding*, page 30, and *Leveling Adjustments*, page 39. For more information on troubleshooting opener problems, see “Troubleshooting,” page 43.

Marker Operation

Optional marker attachments are sold as single (left-hand) or dual units. The markers are operated on the same electro-hydraulic circuit as the raise-to-fold, transport-lock and folding functions.

Before operating the markers, make sure they are properly bled as described under *Marker Hydraulics*, page 19.

To operate the markers, turn the control-console switch to the left marker position after the drill is unfolded. Activate the hydraulic lever to fold or unfold the marker.

The dual markers are equipped with a sequencing valve to ease marker operation. Starting with both markers folded, the sequence is:

1. Activate lever. Right unfolds; left marker stays folded.
2. Reverse lever. Right folds up; left stays folded.
3. Activate lever. Left unfolds; right stays folded.
4. Reverse lever. Left folds up; right stays folded.
5. Sequence repeats.

Because of the sequencing valve, do not turn marker switch between the left and right positions on the control console. The left-marker position controls both markers. If you wish to operate the markers independently, contact your Great Plains dealer for additional parts to modify the marker hydraulics.

Markers are equipped with needle valves to set folding speed. Refer to *Folding Speed*, page 41, and adjust folding speed to a safe rate. Folding or unfolding markers at high speed can damage markers.

When marker operation is complete, return markers to the folded position and turn the marker switch to the center (off) position.
Shaft Monitor Operation

To operate the optional shaft monitors, turn the shaft-monitor switch on the control console to the on position. If either seed-cup shaft stops for 20 seconds, an alarm will sound. A light on the control console will designate the failed shaft.

The 20-second delay is to prevent nuisance alarms when turning at the end of the field. If the alarm sounds, remember you have traveled for 20 seconds without seeding.

Electric Clutch Operation

Electrical clutches on the upper jack shaft turn seeding off and on as the drill is raised and lowered in the field. The electric clutches allow you to turn seeding off while the drill is lowered. A clutch for each drive shaft allows you to control each drill box independently. The clutches are controlled through the in-cab control console.

For regular field operation, turn the electric-clutch switches on the control console to the on position. This will activate the magnet on each clutch and allow the clutch shafts to rotate.

To shut off seeding in one or both boxes while the drill is lowered, turn one or both switches to the off position.

Acremeter Operation

The acremeter\(^1\) counts shaft rotations whenever the shaft is rotating - normally this is only with the drill lowered and in motion. The meter is programmed to display rotations as acres or hectares, when using all rows, factory-specified tires and tire inflations.

Unusual conditions and/or non-standard row spacings can cause the acremeter tally to vary somewhat from actual acres planted.

Refer to Figure 10

Acremeters supplied with drills have varied over time. For operational details (modes, resets, calibration), see the manual supplied with the acremeter:

| Meter Style and Manual | ① 194-074M | ② 152-325M | ③ 152-314M | ④ 194-209M |

1. An electronic acremeter is available as an upgrade for older drills having a mechanical acremeter.
Transporting

CAUTION

This implement should never be towed faster than 20 mph.

Before transporting, check and practice the following items.

Fold Drill. Transport the drill in folded position with transport-lock cylinders extended. Refer to *Folding the Drill*, page 24.

Loaded Boxes. This drill can be transported with boxes loaded with grain, but only with extreme caution. The additional weight reduces maneuverability and increases stopping distance.

Stopping Distance. Keep the weight of this drill in mind. Allow sufficient stopping distance at all times. Reduce speed prior to making any turns or other maneuvers. Increase stopping distance if transporting with loaded boxes.

Bystanders. Check that no one is in the way before moving. Do not allow anyone to ride on the drill.

Tractor Requirements. Check that the towing vehicle is large enough to control the drill on the road. Refer to *Tractor Requirements*, page 22.

Clearance. Know drill dimensions in transport position and follow a route that provides adequate clearance from all obstructions. Refer to *Specifications and Capacities*, page 55.

Tires. Check that all tires are properly inflated as listed on *Tire Inflation Chart*, page 57.

Road Rules. Comply with all federal, state and local laws when transporting on public roads.

Warning Lights. Always use warning lights when transporting the drill.

Watch Traffic. Be prepared for sudden maneuvers from following vehicles.

Markers. Always transport optional markers folded flat. Make sure the second marker section rests securely on the transport carrier.

Harrow Attachment. Fold the optional harrow attachment before hydraulically folding drill for transport. Refer to *Folding Harrow Attachment*, page 25.

Parking

Perform the following steps when parking the drill. Refer to *Storage*, page 45, for information on long-term storage preparation.

1. Raise, lock and fold the drill in the transport position. Refer to *Folding the Drill*, page 24.
2. Park the drill on a level, solid area.
3. Securely block the tires to prevent rolling.
4. Remove the jack from its storage stub. Pin the jack in parking position. See Figure 9, page 23. If the ground is soft, place a board or plate under the jack.
5. Extend the jack until tongue weight is off the drawbar.
6. Unplug the hydraulic lines from the tractor. Do not allow hose ends to rest on the ground.
7. Unplug the control-console cable from the tractor. Unplug the drill light cable from the tractor.
8. Remove hitch pin and safety chain from tractor drawbar.
No-Till Seeding

To get full performance from your no-till drill, you need a good understanding of coulter, opener and press wheel operation.

Coulters. A no-till coulter is mounted independently and directly ahead of each opener. The coulters cut through heavy trash and make a groove in the soil. The coulters are mounted directly on the box frame. Consequently, the cutting depth of all coulters changes as the drill is raised and lowered. The cutting depth of the coulters is controlled by an adjustable hydraulic depth stop. Coulters that run directly in tire tracks can be lowered individually. Refer to Coulter Adjustments, this page, for information on how to make these adjustments.

Openers. Each opener is mounted on the drill with parallel arms. This parallel-action mounting allows the opener to move up and down while staying in-line with a coulter. Opener double disks widen the coulter groove, making a seed bed. A seed tube mounted between the disks delivers seed to the trench. The down force needed to cut and widen the coulter groove is supplied by two springs nested in the parallel linkage. Adjusting these springs changes opener down-force. Refer to Opener Down-Pressure Adjustment, page 36, for information on how to make this adjustment.

Press Wheels. Attached to the rear of each opener is one of several press-wheel options. The press wheels provide two important functions.

First, the press wheels close the furrow, gently pressing the soil over the seed. To provide consistent seed firming, the press wheels are free to move downward from their normal operating position. This system maintains pressing action even if the opener arm is lifted when the disks encounter obstructions.

Second, the press wheels provide opener depth control. The higher the press wheels run relative to the double disks, the deeper seed will be placed. To maintain a consistent depth, upward press-wheel movement is restricted by an independently adjustable stop on each opener. Refer to Press Wheel Adjustment, page 36, for information on how to make this adjustment.

Coulter Adjustments

The drill is assembled so that when the coulters are at two inches deep, the seeding depth is about one inch. This is a good baseline setting for most seeding operations. As field conditions warrant, you can change settings on the entire drill or individual coulters.
Hydraulic Depth Control

Refer to Figure 11

The master field-lift cylinder on the left-hand transport wheel is equipped with a hydraulic valve that regulates coulter depth. Figure 11 shows the valve and knob used to adjust coulter depth.

Turn the knob clockwise to lower the coulters and counter-clockwise to raise the coulters. Each rotation will move the coulters approximately 3/32 inches. Make depth adjustments with the implement slightly raised. After adjusting the valve, raise and lower the implement several times and recheck coulter depth.

The depth stop regulates depth on all coulters. If the ends of either box run higher or lower than the center, the field-lift system may be out of phase or have air in it, or the frame sections may not be level. Refer to *Lifting the Drill in the Field*, page 26, *Bleed Field-Lift Hydraulics*, page 17, or *Leveling Adjustment*, page 39.

When performing maintenance operations, the cylinder lock channels must be installed on the field-lift cylinder rods. On the left-hand field-lift cylinder, remove bolt from the lower depth stop assembly. Rotate the lower depth stop assembly out of the way to prevent damage both the lower depth stop assembly and the lock channel. Refer to *Cylinder Lock Channels*, page 46.

The cylinder lock channels must be installed in the storage location on the mainframe during transport.

WARNING

The cylinder lock channel must not contact the lower depth stop assembly or damage will occur.

WARNING

The cylinder lock channels must not be installed on the field-lift cylinder rods during transport or damage can occur.
Electric Clutch Switch Adjustment

To adjust the height at which seed metering is turned off, follow these steps.

Refer to Figure 12
1. Locate the height switch at left-hand gauge wheel.
2. Lower the implement until it is at a height where seeding should start (usually just above the ground). Securely support frame at this height with jack stands or blocks.
3. Turn off the tractor and remove the key.

Refer to Figure 13
4. Loosen the cam clamp (1) on the gauge wheel rockshaft and turn until the switch roller (2) is just starting to make contact with the ramp surface.

Refer to Figure 14
5. Raise the implement fully and check that the switch is compressed as shown.
Pull Cable Adjustments

Refer to Figure 15

1. To adjust the pull cables, loosen the jam nut on the adjustment trunnion screw, and adjust the screw either in or out to move the box end forward or backwards as required. Once adjusted, re-tighten the jam nut.

2. Pull ahead slightly and re-check the box alignment. Readjust the pull cables if necessary.

Refer to Figure 16

3. The pull cables need to be twisted to allow for proper movement during folding and unfolding operations. To do this, face towards the left hand box frame and remove the pin from the adjustable clevis on the pull cable. Taking the adjustable clevis and pull cable as one, turn or twist this end of the cable one complete turn towards the center of the machine and re-pin the clevis.

4. Face towards the right hand box frame and remove the pin from the adjustable clevis on the pull cable. Take the adjustable clevis and pull cable as one, then turn or twist this end of the cable one complete turn towards the center of the machine and re-pin the clevis.

5. Once both pull cables have been properly twisted, carefully fold and unfold the drill.

6. Tighten all bolts as specified on the ‘Torque Values Chart’ on page 57.

Weights

If more weight is required for coulters to penetrate the soil, weight bracket kits are available from your Great Plains dealer. Refer to Weight Brackets, page 51 for part numbers and ordering information.

Refer to the charts below for the results of adding weights to your drill. Always add an equal amount of weight to each box frame. Never add more than 500 pounds to each box frame.

Weight Chart, 24-Foot Drill

<table>
<thead>
<tr>
<th></th>
<th>7 1/2-in. Rows</th>
<th>8-in. Rows</th>
<th>10-in. Rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Drill, Pounds</td>
<td>17,400</td>
<td>17,100</td>
<td>16,000</td>
</tr>
<tr>
<td>Pounds Per Coulter, No Weights</td>
<td>305</td>
<td>320</td>
<td>390</td>
</tr>
<tr>
<td>Pounds Per Coulter, Brackets and 1000 Pounds Added</td>
<td>330</td>
<td>340</td>
<td>420</td>
</tr>
</tbody>
</table>
Weight Chart, 30-Foot Drill

<table>
<thead>
<tr>
<th></th>
<th>7 1/2-in. Rows</th>
<th>8-in. Rows</th>
<th>10-in. Rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Drill, Pounds</td>
<td>20,100</td>
<td>19,600</td>
<td>18,400</td>
</tr>
<tr>
<td>Pounds Per Coulter, No Weights</td>
<td>285</td>
<td>300</td>
<td>335</td>
</tr>
<tr>
<td>Pounds Per Coulter, Brackets and 1000 Pounds Added</td>
<td>305</td>
<td>325</td>
<td>385</td>
</tr>
</tbody>
</table>

Optional markers, harrows and small-seed attachments add about 25 pounds per coulter. Completely loading the grain or small-seed boxes adds about 100 pounds per coulter.

Coulter Springs

The coulter spring length is preset at 10 inches, giving the coulter an initial operating force of 400 pounds. This setting is adequate for many difficult no-till conditions.

For lighter no-till conditions where rocks or other obstructions are a problem, you can lengthen the springs to protect the coulters from impact. In heavier conditions, shortening the spring will increase coulter force. Refer to the chart below for adjusting the coulter springs.

Coulter Down-Pressure Chart

<table>
<thead>
<tr>
<th>Spring Length</th>
<th>Coulter Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1/4 in.</td>
<td>300 lb.</td>
</tr>
<tr>
<td>10 in.</td>
<td>400 lb.</td>
</tr>
<tr>
<td>9-3/4 in.</td>
<td>525 lb.</td>
</tr>
</tbody>
</table>

Any attempt to reset the coulter spring length shorter than 9 3/4 inches may contribute to premature failure of parts and warranty will be voided. If additional force is necessary, add weights to the implement.
Individual Coulters

Refer to Figure 17

When coulters follow in tire tracks and do not give satisfactory depth, individual coulters can be lowered by loosening the mounting clamps and adjusting the coulter to the desired setting.

To tighten clamps, snug the hex-head clamp bolts (1) just until the U-bolts are tight on each side of the spring bar. Tighten nuts on U-bolts (2), then finish tightening the hex-head clamp bolts.

NOTICE

Never lower any coulter more than 1 1/2 inches. Tire damage could result as the drill is folded. Also note that when the drill is in the raised position, ground clearance on lowered coulters is reduced.

There may be as much as a 1/8-inch gap between the clamp plates even when the coulter is mounted securely.

Figure 17
Individual Coulter Height Adjustment
Opener Down-Pressure Adjustment

You can adjust spring down pressure individually for each opener. This is useful for penetrating hard soil and planting in tire tracks.

Refer to Figure 18

To adjust down pressure, use the adjustment tool stored under the walkboard. Position the tool in the holes on the spring mounting plates and pull down on the adjuster as shown.

Refer to Figure 19

Minimum and maximum settings are indicated by the position of spring adjuster.

Press Wheel Adjustment

Refer to Figure 20

Changing the height of the press wheel automatically changes seeding depth. To adjust, lift up on the T-handle and slide it forward or back.

- For shallower seeding, slide the handle toward the implement.
- For deeper seeding, slide the handle away from the implement.
Setting the Seeding Rate

Calibrating the seeding rate requires four steps: shifting the speed-change gearbox, adjusting the seed-rate handle, setting the seed-cup doors, and checking the seeding rate.

Check the Seed-Rate Charts or in the drill boxes. These charts list the proper settings for the speed-change gearbox and seed-rate handle for various seeds and seeding rates.

The seed-rate charts are based on cleaned, untreated seed of average size and test weight. The rates are based on 11L x 15 8-ply rib implement tires and 265/70B16 skid steer tires. Many factors will affect seeding rates including foreign material, seed treatment, seed size, field conditions, tire pressure and test weight. Minor adjustments likely will be needed. Set and check the seeding rate using the procedures below, then re-adjust the rate as necessary.

Before setting the seeding rate, rotate both gauge wheels to see that the seed cups and drive are working properly and free from foreign material.

- Each drill box has its own metering mechanism. After adjusting and checking the rate on one box, set the same rate on the other box.

1. **Shift Speed-Change Gearbox**

 Refer to Figure 21

 The speed-change gearbox is designed to give you a variety of speeds for different seeds and seeding rates. You can shift between four different drive types.

<table>
<thead>
<tr>
<th>Gearbox Ratios:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Type 2 is 2.06 Times Faster Than 1</td>
</tr>
<tr>
<td>Drive Type 3 is 3.08 Times Faster Than 1</td>
</tr>
<tr>
<td>Drive Type 4 is 5.03 Times Faster Than 1</td>
</tr>
</tbody>
</table>

 Refer to the seed-rate charts for the correct drive type—1, 2, 3 or 4. Move the selector handle on the gearbox until the correct number appears in the handle window as shown in Figure 21. Rotate the tires a few turns to confirm the gearbox has engaged.
2. Adjust Seed-Rate Handle

Refer to Figure 22
Position the handle to the setting indicated on the seed-rate chart. To adjust, loosen the wing nut under the handle and slide until indicator lines up with desired setting. Tighten nut.

3. Set Seed-Cup Doors

Refer to Figure 23
For wheat and other small seeds, move the seed-cup-door handles to the highest position. For soybeans and other large seeds, lower the handles to the second position. If excessive seed cracking occurs, lower the handles to the third position. For seed-cup clean out, move the handles to the fourth, wide-open position. Make sure all handles are in the same position before drilling.

4. Check Seeding Rate
 a. Place several pounds of seed over the three seed cups on the outside end of the drill box.
 b. Disconnect the seed tubes from the three openers fed by the covered cups.
 c. Raise the drill off the ground.
 d. Record the empty weight of a container large enough to hold the seed metered for one acre.
 e. Turn gauge wheels until seed drops to the ground from each cup.
 f. Place a container under the three seed tubes to gather the seed as it is metered.
 g. Rotate the gauge wheel until one acre has been tallied on the acremeter. This will be about 225 rotations on a 24-foot drill and about 181 rotations on a 30-foot drill. Check that the seed cups have plenty of seed coming into them.
 h. Weigh the metered seed. Subtract the initial weight of the container. Divide by three. Multiply by the number of openers on your drill for the pounds-per-acre seeding rate. If this figure is different than desired, re-adjust the seed-rate handle and recheck the rate.

5. When satisfied with the seeding rate, repeat steps 1 through 3 for the other drill box, setting it to the same rate.
Small Seeds Attachment
To set the seeding rate, refer to the Seed-Rate Charts. Move the seed-rate handle on the attachment to the setting indicated on the chart.
To calibrate the attachment to your material, follow the steps listed under Check Seeding Rate, page 38.

Gauge-Wheel Drive Adjustment
Refer to Figure 24
Inside both gauge-wheel arms are two idler sprockets. Adjust these sprockets after the first 100 acres of drill use and at the beginning of each season.
To adjust, move the front idler sprocket on the top of the chain down by loosening the jam nut and screwing in the adjustment stud, located on top of the wheel arm. Do not over tighten chains, causing excessive wear. Tighten the jam nut to maintain the idler position.

Disk Scraper Adjustment
Refer to Figure 25
To keep the double-disk openers turning freely, dirt scraper are mounted between the disks to clean as the disks rotate. As field conditions vary, you may need to adjust the scrapers. In damp conditions, the scrapers may need to be lowered. If openers are not turning freely, the scrapers may need to be raised. To adjust scrapers, loosen the 3/8-inch bolt and move scraper as needed.
The optional Air Design disk scrapers are self-adjusting.

Leveling Adjustment
Equal coulter depth across the implement can only be maintained if all frame sections are level. Periodic frame leveling should not be necessary. If your drill appears to lift or plant unevenly, check the following before re-leveling the drill.
First, make sure the tongue is level to the ground while running in the field. Refer to Hitch Height Adjustment, page 15.
Second, check the field-lift cylinders. Be sure they are properly bled, operating correctly, and do not have internal oil leaks.
If leveling is necessary, follow instructions under Frame Leveling Adjustment, page 20.
Marker Adjustments

Marker Chain
There are two marker chain adjustments—lifting slack and folding slack. These adjustments should be performed during initial marker assembly, but additional adjustment may be needed. The adjustments are interrelated and should be made in the following order:

Lifting Slack
1. Start with the marker in the unfolded position. Back the full-threaded adjustment bolt down until the head extends as little as possible. Slowly fold the marker, observing the motion of the disk. If the marker disk slides across the ground more than about one foot before the chain and linkage lifts it up, the chain is too slack. Tighten the chain by moving the clevis one or two links at the inside end of the chain. Recheck by repeating this process.

2. If the chain does not have enough slack when the marker is in the unfolded field position, the chain will prevent the end of the marker from dropping into field depressions. Correct this condition by moving the utility clevis one or two links, giving the chain more slack.

Folding Slack
Refer to Figure 26
After the adjustments in step one have been completed, fold the marker. The adjustment bolt is provided to take the slack out of the chain while the marker is in the folded position. Extend this bolt until the slack is out of the chain. Lock the bolt in this position by tightening the nuts on either side of the upright channel on the first marker section.

Notice
To prevent marker damage, the marker arm is attached to the marker body with a 7/16-inch, grade 5 shear bolt. See Figure 26. If it breaks, you must replace it with a grade 5 bolt. The bolt is Great Plains part number 802-234C.
Disk Adjustment

The aggressiveness and the mark left by the disk may be changed by two methods:

Angle of Cut

Refer to Figure 27

To change the angle of cut, loosen the two 1/2-inch bolts holding the disk assembly. Rotate the disk assembly as desired.

Direction of Cut

Refer to Figure 28

The disk may be mounted to throw dirt in or out for different marks in different soil conditions. To change the direction of cut:

a. Reverse the disk by removing the four lug bolts on the disk hub. Remount the depth band and lug bolts.

b. Turn the entire disk assembly by removing the two 1/2-inch bolts and turning the assembly one-half turn. Reinstall the 1/2-inch bolts and set the disk angle as desired.

Folding Speed

Refer to Figure 29

The dual markers are equipped with hex-head screws to adjust folding speed. The screws are on the sequence-valve body. There are two screws—one controls folding speed (1), the other controls unfolding speed (2). Turn the adjustment screws clockwise for slower folding or counterclockwise for faster folding. Adjust to a safe speed. Excessive speed could damage the markers and void the warranty.
Refer to Figure 30
The single-marker system is equipped with a needle valve in the hydraulic hose line at the rod end of the marker cylinder. Turn the adjustment knob clockwise to decrease or counterclockwise to increase folding speed. Adjust to a safe speed. Excessive folding speed could damage the marker and may void the warranty.

Coulter Tines
Optional coulter tines are available for the front-mounted coulters. In high-residue fields, the tines will help guide residue under the coulters and openers to prevent plugging. Under normal conditions these tines should not be needed. Remove or install the tines as field condition warrant.

Harrow Attachment Adjustment
Refer to Figure 31
Figure 31 shows a successful harrow position for no-till conditions. Because of different soil moisture, trash levels and trash types, you may need to reposition the tube frame or tines. Initially position the frame and tines as shown, then re-adjust as necessary.

Refer to Figure 32
To adjust the frame, loosen the four hex nuts (1) on the u-bolts and rotate the frame tube (2) as necessary. To adjust the tines, loosen the four 1/2-inch hex nuts (3) on the 1/2-inch U-bolts (4) on the support bar (5). Rotate tine tubes (6) so the tines (7) are against the stop bushings (8) and are angled back as necessary. Tighten hex nuts on U-bolts.

Seed-Lok
The optional Seed-Lok firming wheels provide additional seed-to-soil contact. The wheels are spring loaded and do not require adjusting. In some wet and sticky conditions the wheels may accumulate soil. Remove or install the wheels as field conditions warrant.
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uneven seed spacing or stand</td>
<td>Check for plugging in seed cups.</td>
</tr>
<tr>
<td></td>
<td>Check for plugging in seed tubes.</td>
</tr>
<tr>
<td></td>
<td>Reduce ground speed.</td>
</tr>
<tr>
<td></td>
<td>Check that opener disks turn freely.</td>
</tr>
<tr>
<td></td>
<td>Shift speed-change gearbox to a faster drive-type and adjust the seed-rate handle to a lower number.</td>
</tr>
<tr>
<td></td>
<td>Increase spring pressure so openers penetrate low spots. Refer to Opener Down-Pressure Adjustments, page 36.</td>
</tr>
<tr>
<td></td>
<td>Check for trash or mud build-up on Seed-Lok wheels.</td>
</tr>
<tr>
<td>Opener disks not turning freely</td>
<td>Check for trash or mud build-up on disk scraper. Re-adjust scraper if necessary. Refer to Disk Scraper Adjustment, page 39.</td>
</tr>
<tr>
<td></td>
<td>Check if disk scraper is restricting disk movement. Refer to Disk Scraper Adjustment, page 39.</td>
</tr>
<tr>
<td></td>
<td>Check disk bearings.</td>
</tr>
<tr>
<td></td>
<td>Check opener frame for possible damage.</td>
</tr>
<tr>
<td></td>
<td>If opener disks turn freely by hand but not in field, reduce down pressure on opener. Refer to Opener Down-Pressure Adjustment, page 36.</td>
</tr>
<tr>
<td></td>
<td>Check if press wheels are adjusted too high. Refer to Press Wheel Adjustment, page 36.</td>
</tr>
<tr>
<td>Actual seeding rate is different than desired</td>
<td>Check tire pressure. Proper inflation is listed on Tire Inflation Chart, page 57.</td>
</tr>
<tr>
<td></td>
<td>Check gauge-wheel size. Proper size is 11L x 15 8-ply.</td>
</tr>
<tr>
<td></td>
<td>Clean seed-treatment build up out of seed cups and shafts.</td>
</tr>
<tr>
<td></td>
<td>Refer to Setting the Seeding Rate, page 37, for instructions on calculating seeding rate.</td>
</tr>
<tr>
<td>Excessive seed cracking</td>
<td>Use slower drive type on gearbox and adjust seed-rate handle to a higher number.</td>
</tr>
<tr>
<td></td>
<td>Position seed-cup doors to a lower notch. Refer to Set Seed-Cup Doors, page 38.</td>
</tr>
<tr>
<td>Acremeter doesn’t measure accurately</td>
<td>Check tire pressure. Proper inflation is listed on Tire Inflation Chart, page 57.</td>
</tr>
<tr>
<td></td>
<td>Check gauge-wheel tire size. Proper size is 11L x 15 8-ply.</td>
</tr>
<tr>
<td></td>
<td>Check seeding operation for excessive overlap or gaps between passes.</td>
</tr>
<tr>
<td></td>
<td>Consider soil conditions; loose soil and slippage will cause variations in acres registered.</td>
</tr>
<tr>
<td></td>
<td>Check that your acremeter is for your drill width. Refer to the parts manual.</td>
</tr>
<tr>
<td>Uneven seeding depth</td>
<td>Check if drill tongue is running level with ground. Refer to Hitch Height Adjustment, page 15.</td>
</tr>
<tr>
<td></td>
<td>Check if drill frame is level. Refer to Leveling Adjustment, page 39.</td>
</tr>
<tr>
<td>Press wheel not compacting the soil as desired</td>
<td>Reset press-wheel depth. Refer to Press Wheel Adjustment, page 36.</td>
</tr>
<tr>
<td></td>
<td>Re-adjust press wheel depth to match coulter depth.</td>
</tr>
<tr>
<td></td>
<td>Increase down-pressure on disk openers. Refer to Opener Down-Pressure Adjustment, page 36.</td>
</tr>
<tr>
<td>Grain box not emptying evenly</td>
<td>Check that speed-change gearbox and seed-rate handles are set the same on each drill box.</td>
</tr>
<tr>
<td></td>
<td>Certain models do not have the same number of seed cups between each divider of bulkhead. The section with more cups will empty sooner.</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Press wheel or openers plugging</td>
<td>Check soil conditions—may be too damp. Decrease opener down pressure. See Opener Down-Pressure Adjustment, page 36. Do not back up with openers in the ground. Do not stop and allow drill to roll backward with openers in ground. Check optional Seed-Lok wheels. Remove if soil conditions are too wet. Refer to Seed-Lok, page 42. Install coulter trash tines. Refer to Coulter Tines, page 42.</td>
</tr>
<tr>
<td>Raising and lowering drill is rough or uneven</td>
<td>Lubricate wheel-arm pivot casting. Refer to Lubrication, page 47. Check hydraulic fittings for leaks. Rephase the field-lift cylinders. Refer to Lifting the Drill in the Field, page 26. Check that rephasing cylinders have been properly bleed. Refer to Field-Lift Hydraulics, page 17.</td>
</tr>
<tr>
<td>Seed-cup sprockets locked up or twisted seed-cup shaft</td>
<td>Check for foreign material lodged in one or more seed-cup sprockets. Inspect seed-cups for dried liquid insecticide. Remove build-up by disassembling each seed cup and scraping the foreign substance from the turning surfaces.</td>
</tr>
<tr>
<td>Coulters not going deep enough</td>
<td>Check weight charts on page 33 and add weight if necessary. Change depth stop to lower coulters. Refer to Coulter Adjustments, page 35.</td>
</tr>
<tr>
<td>Coulters and drill going too deep</td>
<td>Check weight charts on page 33 and remove weight if necessary. Set press wheels to a shallower depth. Refer to Press Wheel Adjustment, page 36. Change depth stop to raise coulters. Refer to Coulter Adjustments, page 30.</td>
</tr>
<tr>
<td>Openers and/or coulters plugging in adverse conditions</td>
<td>Drill at a slight angle to the rows. Install coulter trash tines. Refer Coulter Adjustments page 30.</td>
</tr>
<tr>
<td>Actual seeding rate is different than desired</td>
<td>Check tire pressure. Proper inflation is listed on Tire Inflation Chart, page 57. Check gauge wheel size. Proper size is 11L x 15” 8-ply. Seed treatment will affect seeding rate if the chemicals build up in seed cup. Unless cleaned regularly, this build-up can cause the seed-cup shaft to twist or break.</td>
</tr>
<tr>
<td>Hydraulic marker functioning improperly</td>
<td>Check all hose fittings and connections for air and oil leaks. Check that the chain on the folding marker is slack when the marker is both fully folded and unfolded. Add chain slack as necessary. Refer to Marker Adjustments, page 40. Check tractor hydraulic oil level. Check all bolts and fasteners. Check if needle valve is plugged; open valve, cycle markers, and reset the needle valve if necessary. Check that switches on control console are set properly. Refer to Field Operations, page 26.</td>
</tr>
<tr>
<td>Marker disk blade does not mark</td>
<td>Check if the marker folding linkage and chain have enough slack to allow the marker disk to drop in low spots. Maximum down float should be limited by the slots at the rod end of the marker cylinder—not by the chain. Add chain slack as necessary. Refer to Marker Chain, page 40. Reverse blade to pull dirt in or throw dirt out depending on soil conditions. Refer to Disc Scraper Adjustment, page 39. An optional smooth blade is available through your Great Plains dealer.</td>
</tr>
</tbody>
</table>
General Maintenance

Proper servicing and adjustment is the key to long implement life. With careful and systematic inspection, you can avoid costly maintenance, downtime and repair. Always turn off and remove the tractor key before making any adjustments or performing maintenance.

1. After using your drill for several hours, check all bolts to be sure they are tight. Periodically check and secure all bolts, pins and fasteners. Tighten as specified on Torque Values Chart, page 57.

2. Clean or replace any fittings that will not take grease. Lubricate the drill as noted under Lubrication, page 47.

3. Clean nozzles on optional rear-mount boom with a low pressure (less than 30 psi) air hose. Periodically replace nozzles. Always wear rubber gloves when making repairs or adjustments.

4. Adjust idlers to remove excess slack from chains. Adjust gauge-wheel arm drive chain as explained under Gauge-Wheel Drive Adjustment, page 39. Clean and use chain lube on all roller chains as needed.

5. Always maintain correct tire pressure. Refer to Tire Inflation Chart, page 57.

7. Check disk scrapers for proper adjustment. Refer to Disk-Scraper Adjustment, page 39.

8. Replace any worn, damaged or illegible safety labels at once. Refer to Safety Decals, page 5, for correct label placement. Obtain new labels from your Great Plains dealer.

DANGER

Some chemicals will cause serious burns, lung damage and death. Avoid contact with skin or eyes. Wear proper protective equipment as required by chemical manufacturer. Avoid prolonged breathing of chemical fumes. Wear respirator as required by chemical manufacturer. Seek medical assistance immediately if accident occurs. Know what to do in case of an accident.

WARNING

You may be severely injured or killed by being crushed from a falling implement. Always have transport locks in place and frame sufficiently blocked up when working on implement.

WARNING

Escaping fluid under pressure can have sufficient pressure to penetrate the skin. Check all hydraulic lines and fittings before applying pressure. Fluid escaping from a very small hole can be almost invisible. Use paper or cardboard, not body parts, and wear heavy gloves to check for suspected leaks. If injured, seek medical assistance from a doctor that is familiar with this type of injury.
Cylinder Lock Channels

The cylinder lock channels are 1 1/2 in wide channels. They are pinned to the bottom edges of the mainframe near the tongue, one on each side. When performing maintenance operations, the cylinder lock channels must be installed on the field-lift cylinder rods. During transport the cylinder lock channels must be installed in the storage location on the mainframe.

WARNING

The cylinder lock channel must not contact the lower depth stop assembly or damage will occur.

WARNING

The cylinder lock channels must not be installed on the field-lift cylinder rods during transport or damage can occur.

To install a cylinder lock channel on the left-hand transport cylinder, do the following:

1. Remove the bolt, lock washer, and nut from the lower depth stop assembly.
2. Rotate the lower depth stop assembly down.
3. Install the cylinder lock channel on the transport cylinder rod.
4. Install the clevis pin and hair pin in the cylinder lock channel.

Storage

Store the drill where children do not play. If possible, store the drill inside for longer life.

1. If you store the drill in the unfolded position, unpin and fully retract the fold cylinders to prevent rust.
2. Clean the drill as necessary. Be sure that the seed boxes are cleaned completely before storing.
3. Disconnect seed hoses from openers. Premature hose damage will occur if drill is stored with hoses connected.
4. Adjust idlers to remove excess slack from chains. Adjust gauge-wheel-arm drive chain as explained under Gauge-Wheel Drive Adjustment, page 39. Clean and use chain lube on all roller chains as needed.
5. Lubricate the drill at all points indicated under Lubrication, this page. Be sure the seed-cup drive sprocket is oiled before the drill is stored.
6. Check all bolts, pins, fitting and hoses. Tighten, repair or replace parts as needed.
7. Check all moving and soil-contact parts for wear or damage. Make notes of any parts needing repair.
8. Use Great Plains touch-up paint to cover scratches, chips and worn areas to prevent rust.
Lubrication

Gauge-Wheel-Arm Pivot Castings

The grease fittings are in the three-bolt cast bearings at the end of each wheel arm pivot tube.

Type of Lubrication: Grease

Transport-Axle Assembly

Grease fittings on both sides of the three bearings shown on each end of rockshaft - 12 fittings total. (Rockshaft is inside and above the dual transport tires.)

Type of Lubrication: Grease

Clutches

Two zerks on each clutch (on models prior to 2002).

Type of Lubrication: Grease
Coulter-Arm Pivots

Zerks are on central grease banks - two banks on each box.
Type of Lubrication: Grease

Coulter Hub Bearings

Type of Lubrication: Grease

Wheel Bearings

Repack and check seals on transport and gauge wheels.
Type of Lubrication: Grease

Seed-Cup-Drive Sprocket

Oil sprocket hub in its square bore. Squirt oil on the square seed-cup shaft and move seed-rate handle back and forth to get oil back into the square.
Type of Lubrication: Oil
Drive-Train Roller Chain

Type of Lubrication: Chain Lube

Optional Attachments Lubrication

Gauge-Wheel-to-Agitator Chains

Type of Lubrication: Chain Lube

Electric Clutch-Drive Chain

Type of Lubrication: Chain Lube

As Required

As Required

15

12227

12227

13933
Marker Hinges

Type of Lubrication: Grease

Marker-Disc Bearings

If the grease seal cap is damaged or missing, disassemble and clean the hub. Repack with grease and install a new seal or grease cap.

Type of Lubrication: Grease

Speed-Change Box

The speed-change gearbox is lubricated and sealed at the factory. Under normal conditions, it does not require maintenance or lubrication.

If you open the gearbox for repair, repack all gears and around the shaft bearings with least 7 ounces of lithium-based, wheel-bearing grease.

It is important to keep moisture and dirt out of the gearbox. Inspect the rubber seals on the gearbox drive and shifter shafts. Replace seals if necessary.

Before bolting them back together, spread a very thin coat of anaerobic sealant (such as Loctite 525) on the gearcase-mating surfaces. Grease fittings on both sides of the three bearings shown on each end of rockshaft - 12 fittings total. (Rockshaft is inside and above the dual transport tires.)

NOTICE

Use sealant sparingly! Excess sealant may squeeze off surface and lock bearings or gears.
Options

Coulter Tines
The coulters on your implement can be equipped with optional trash tines. Under most conditions, these tines will not be needed. In high-residue fields, the tines will help guide the residue under the coulters and openers to prevent plugging.

To order tines, contact your Great Plains dealer. Refer to the table below for the correct tine package for your drill.

<table>
<thead>
<tr>
<th>Drill Size</th>
<th>Coulter Tine Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-ft., 7 1/2-in. Rows</td>
<td>149-717A</td>
</tr>
<tr>
<td>24-ft., 8-in. Rows</td>
<td>149-718A</td>
</tr>
<tr>
<td>24-ft., 10-in. Rows</td>
<td>149-719A</td>
</tr>
<tr>
<td>30-ft., 7 1/2-in. Rows</td>
<td>149-714A</td>
</tr>
<tr>
<td>30-ft., 8-in. Rows</td>
<td>149-715A</td>
</tr>
<tr>
<td>30-ft., 10-in. Rows</td>
<td>149-716A</td>
</tr>
</tbody>
</table>

Weight Brackets
If soil conditions require more weight for coulter penetration, weight bracket kits are available. Each kit contains two weight brackets—one for each box frame. The weight brackets hold several styles of suitcase weights commonly available through tractor dealers, including John Deere, CASE, International Harvester and CASE-IH.

For information on how additional weights will affect seeding depth, refer to Weights, page 33.

To order weight brackets, contact your Great Plains dealer. Refer to the table below for the correct brackets for your drill.

<table>
<thead>
<tr>
<th>Drill Size</th>
<th>Weight Bracket Kit Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-ft. Drills</td>
<td>197-112A</td>
</tr>
<tr>
<td>30-ft. Drills</td>
<td>197-110A</td>
</tr>
</tbody>
</table>

Shaft Monitors
The optional 2-channel shaft monitor is an electronic monitoring system to detect when seed-cup shafts stop turning. If a shaft stops for more than 20 seconds, an alarm sounds and a warning light designates the failed shaft.

For information on how to operate the shaft monitors, refer to Shaft Monitor Operation, page 28.

To order shaft monitors, contact your Great Plains dealer.

<table>
<thead>
<tr>
<th>Monitor Bundle</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft Monitor Package</td>
<td>197-106A</td>
</tr>
</tbody>
</table>
Markers

Hydraulically operated no-till markers are available. The units have a cast hub, tapered roller bearings and a bolt-on notched blade to cut though heavy residue, leaving a line for you to follow on the next field pass. Markers are sold as either a single or dual units. Dual markers are equipped with a sequence valve for easy operation.

For information on how to operate the markers, refer to Marker Operation, page 27. For information on how to adjust the markers, refer to Marker Adjustment, page 40.

To order markers, contact your Great Plains dealer. Refer to the table below for the correct marker package for your drill.

<table>
<thead>
<tr>
<th>Marker Package</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-ft. 2-Section No-Till Left-Hand Flat-Fold</td>
<td>113-498A</td>
</tr>
<tr>
<td>24-ft. 2-Section No-Till Dual Flat-Fold</td>
<td>113-499A</td>
</tr>
<tr>
<td>30-ft. 2-Section No-Till Left-Hand Flat-Fold</td>
<td>113-500A</td>
</tr>
<tr>
<td>30-ft. 2-Section No-Till Dual Flat-Fold</td>
<td>113-501A</td>
</tr>
</tbody>
</table>

Small Seeds Attachment

The small-seeds attachment delivers the smallest seeds evenly and gently. With a Y-tube, small seeds are placed through the opener seed tube. Otherwise, seeds are placed directly in front of the press wheel. The attachment holds 0.24 bushels per foot.

For setting the seeding rate on the attachment, refer to Check Seeding Rate page 38.

To order the small seeds attachment, contact your Great Plains dealer. Refer to the table below for the correct part number for your drill.

<table>
<thead>
<tr>
<th>Drill Size</th>
<th>Attachment Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Part Number</td>
</tr>
<tr>
<td></td>
<td>With Y-Tube</td>
</tr>
<tr>
<td>24-ft., 7 1/2-in. Rows</td>
<td>133-024A</td>
</tr>
<tr>
<td>24-ft., 8-in. Rows</td>
<td>133-026A</td>
</tr>
<tr>
<td>24-ft., 10-in. Rows</td>
<td>133-128A</td>
</tr>
<tr>
<td>30-ft., 7 1/2-in. Rows</td>
<td>133-017A</td>
</tr>
<tr>
<td>30-ft., 8-in. Rows</td>
<td>133-020A</td>
</tr>
<tr>
<td>30-ft., 10-in. Rows</td>
<td>133-022A</td>
</tr>
</tbody>
</table>
Harrow Attachment
The coil-tine harrow finishes no-till surfaces by leveling and distributing residue for enhanced seed emergence. The harrow attachment folds for transport.
For information on how to fold the harrow for transport, refer to *Folding Harrow Attachment*, page 25. For information on how to adjust the harrow, refer to *Harrow Attachment Adjustment*, page 42.
To order the harrow attachment, contact your Great Plains dealer. Refer to the table below for the correct harrow package for your drill.

<table>
<thead>
<tr>
<th>Harrow Package</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-ft. No-Till Harrow Assembly</td>
<td>116-138A</td>
</tr>
<tr>
<td>30-ft. No-Till Harrow Assembly</td>
<td>116-137A</td>
</tr>
</tbody>
</table>

Rear Mount Boom
The drill boom mounts under the walkboard and allows you to apply liquid herbicides or pesticides behind the drill press wheels. The kit includes mounting hardware, boom plumbing and nozzle bodies for 20-inch spacing. Tractor tanks, pump, plumbing to the drill and nozzles are required.
To order the boom, contact your Great Plains dealer.

<table>
<thead>
<tr>
<th>Package</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>116-195A</td>
<td>24-Foot Two-Section No-Till Spray Boom</td>
</tr>
<tr>
<td>116-194A</td>
<td>30-Foot Two Section No-Till Spray Boom</td>
</tr>
</tbody>
</table>

Seed Box Agitator
An optional agitator can be added to the main seed boxes. The agitator is designed to stir the seed directly above the metering cups. The agitator helps prevent bridging of light, fluffy seeds and separates soybeans that are sticky with inoculant.
If your drill is equipped with a small seeds or fertilizer attachment, the agitator is available without a drive.
To order the agitator, contact your Great Plains dealer. Refer to the table below for the correct part for your drill.

<table>
<thead>
<tr>
<th>Drill Size</th>
<th>Agitator Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-ft., 7 1/2-in. Rows</td>
<td>With Drive: 118-459A, Without Drive: 118-465A</td>
</tr>
<tr>
<td>24-ft., 8-in. Rows</td>
<td>With Drive: 118-460A, Without Drive: 118-466A</td>
</tr>
<tr>
<td>24-ft., 10-in. Rows</td>
<td>With Drive: 118-461A, Without Drive: 118-467A</td>
</tr>
<tr>
<td>30-ft., 7 1/2-in. Rows</td>
<td>With Drive: 118-456A, Without Drive: 118-462A</td>
</tr>
<tr>
<td>30-ft., 8-in. Rows</td>
<td>With Drive: 118-457A, Without Drive: 118-463A</td>
</tr>
<tr>
<td>30-ft., 10-in. Rows</td>
<td>With Drive: 118-458A, Without Drive: 118-464A</td>
</tr>
</tbody>
</table>
Seed-Lok Firming Wheels

The optional, spring-loaded Seed-Lok firming wheel presses the seed directly into the bottom of the seed bed. The Seed-Lok option provides more even seed emergence since seeds are planted and firmed at the same depth.

To order Seed-Lok firming wheels, contact your Great Plains dealer.

<table>
<thead>
<tr>
<th>Seed-Lok Bundles</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Stand Removable 5-in. Seed-Lok</td>
<td>122-193k</td>
</tr>
</tbody>
</table>

Seed-Cup Plugs

Seed-cup plugs are available to block off individual rows when you want wider row spacing. These plugs are installed by pushing them into the seed-cup openings on the desired rows.

To order seed-cup plugs, contact your Great Plains dealer.

<table>
<thead>
<tr>
<th>Seed Cup Plugs Package</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3/4 in. Wide Seed-Cup Plug</td>
<td>817-087C</td>
</tr>
</tbody>
</table>
Specifications and Capacities

<table>
<thead>
<tr>
<th>Transport Width</th>
<th>17 feet, 1 inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Width</td>
<td>24 or 30 feet</td>
</tr>
<tr>
<td>Box Length</td>
<td>12 or 15 feet</td>
</tr>
<tr>
<td>Dual Transport Tire Size</td>
<td>12.5L x 15 20-Ply</td>
</tr>
<tr>
<td>Gauge Wheel Tire Size:</td>
<td>11L x 15 8-Ply</td>
</tr>
<tr>
<td>Box Capacity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-ft. Drill: 48 bushels</td>
</tr>
<tr>
<td></td>
<td>30 ft. Drill: 60.6 bushels</td>
</tr>
<tr>
<td>Negative Tongue Weight:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-ft. Drill, empty: 2650 lb.</td>
</tr>
<tr>
<td></td>
<td>24-ft. Drill, loaded: 3800 lb.</td>
</tr>
<tr>
<td></td>
<td>30-ft. Drill, empty: 2750 lb.</td>
</tr>
<tr>
<td></td>
<td>30-ft. Drill, loaded: 4000 lb.</td>
</tr>
</tbody>
</table>

Drill Row Number of Drill Weight

<table>
<thead>
<tr>
<th>Drill</th>
<th>Row</th>
<th>Number</th>
<th>of Drill Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5 in.</td>
<td>38</td>
<td></td>
<td>17,400 lb.</td>
</tr>
<tr>
<td>8 in.</td>
<td>36</td>
<td></td>
<td>17,100 lb.</td>
</tr>
<tr>
<td>10 in.</td>
<td>28</td>
<td></td>
<td>16,000 lb.</td>
</tr>
<tr>
<td>7.5 in.</td>
<td>48</td>
<td></td>
<td>20,100 lb.</td>
</tr>
<tr>
<td>8 in.</td>
<td>44</td>
<td></td>
<td>19,600 lb.</td>
</tr>
<tr>
<td>10 in.</td>
<td>36</td>
<td></td>
<td>18,400 lb.</td>
</tr>
</tbody>
</table>

All tires are warranted by the original manufacturer of the tire. Tire warranty information can be found in the brochures included with your Operator’s and Parts Manuals or online at the manufacturer’s websites. For service assistance or information, contact your nearest Authorized Farm Tire Retailer.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titan</td>
<td>www.titan-intl.com</td>
</tr>
<tr>
<td>Goodyear</td>
<td>www.goodyearag.com</td>
</tr>
<tr>
<td>Firestone</td>
<td>www.firestoneag.com</td>
</tr>
<tr>
<td>BKT Tires</td>
<td>www.bkt-tires.com</td>
</tr>
<tr>
<td>Gleason Wheel</td>
<td>www.gleasonwheel.com</td>
</tr>
</tbody>
</table>
Appendix

Electric Clutch Console and Wire Harness

1. Connect to tractor battery.
2. Leave console loose in the tractor cab.
3. Run this wire connector out the cab and to the back of the tractor.
4. Connect to the electric clutch located on the left-hand side of the frame.
5. At the front of the drill tongue, uncoil the wire harness and connect the plug to the plug coming from the tractor cab.
6. Connect to the electric clutch located on the right-hand side of the frame.
7. At the rear of the tongue, uncoil the wire harness and route appropriate leads along the drill frame.
8. Connect to the electric clutch switch located on the left-hand gauge wheel rockshaft.
Torque Values Chart for Common Bolt Sizes

<table>
<thead>
<tr>
<th>Bolt Size</th>
<th>Bolt Head Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>in-tpi(^a)</td>
<td>Grade 2</td>
</tr>
<tr>
<td>N-m(^b)</td>
<td>ft-lb(^d)</td>
</tr>
<tr>
<td>1/8-20</td>
<td>7.4</td>
</tr>
<tr>
<td>1/8-28</td>
<td>8.5</td>
</tr>
<tr>
<td>5/32-18</td>
<td>15</td>
</tr>
<tr>
<td>5/32-24</td>
<td>17</td>
</tr>
<tr>
<td>3/16-16</td>
<td>27</td>
</tr>
<tr>
<td>5/32-24</td>
<td>31</td>
</tr>
<tr>
<td>7/32-14</td>
<td>43</td>
</tr>
<tr>
<td>7/32-20</td>
<td>49</td>
</tr>
<tr>
<td>1/4-13</td>
<td>66</td>
</tr>
<tr>
<td>1/4-20</td>
<td>75</td>
</tr>
<tr>
<td>9/32-12</td>
<td>95</td>
</tr>
<tr>
<td>9/32-18</td>
<td>105</td>
</tr>
<tr>
<td>5/32-11</td>
<td>130</td>
</tr>
<tr>
<td>5/32-18</td>
<td>150</td>
</tr>
<tr>
<td>3/16-10</td>
<td>235</td>
</tr>
<tr>
<td>3/16-16</td>
<td>260</td>
</tr>
<tr>
<td>7/32-9</td>
<td>225</td>
</tr>
<tr>
<td>7/32-14</td>
<td>250</td>
</tr>
<tr>
<td>1-8</td>
<td>340</td>
</tr>
<tr>
<td>1-12</td>
<td>370</td>
</tr>
<tr>
<td>1/8-7</td>
<td>480</td>
</tr>
<tr>
<td>1/8-12</td>
<td>540</td>
</tr>
<tr>
<td>1/4-7</td>
<td>680</td>
</tr>
<tr>
<td>1/4-12</td>
<td>750</td>
</tr>
<tr>
<td>3/8-6</td>
<td>890</td>
</tr>
<tr>
<td>3/8-12</td>
<td>1010</td>
</tr>
<tr>
<td>1/2-6</td>
<td>1180</td>
</tr>
<tr>
<td>1/2-12</td>
<td>1330</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bolt Size</th>
<th>Bolt Head Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm x pitch(^c)</td>
<td>Class 5.8</td>
</tr>
<tr>
<td>N-m</td>
<td>ft-lb</td>
</tr>
<tr>
<td>M 5 X 0.8</td>
<td>4</td>
</tr>
<tr>
<td>M 6 X 1</td>
<td>7</td>
</tr>
<tr>
<td>M 8 X 1.25</td>
<td>17</td>
</tr>
<tr>
<td>M 8 X 1</td>
<td>18</td>
</tr>
<tr>
<td>M10 X 1.5</td>
<td>33</td>
</tr>
<tr>
<td>M10 X 0.75</td>
<td>39</td>
</tr>
<tr>
<td>M12 X 1.75</td>
<td>58</td>
</tr>
<tr>
<td>M12 X 1.5</td>
<td>60</td>
</tr>
<tr>
<td>M12 X 1</td>
<td>90</td>
</tr>
<tr>
<td>M14 X 2</td>
<td>92</td>
</tr>
<tr>
<td>M14 X 1.5</td>
<td>99</td>
</tr>
<tr>
<td>M16 X 2</td>
<td>145</td>
</tr>
<tr>
<td>M16 X 1.5</td>
<td>155</td>
</tr>
<tr>
<td>M18 X 2.5</td>
<td>195</td>
</tr>
<tr>
<td>M18 X 1.5</td>
<td>220</td>
</tr>
<tr>
<td>M20 X 2.5</td>
<td>280</td>
</tr>
<tr>
<td>M20 X 1.5</td>
<td>310</td>
</tr>
<tr>
<td>M24 X 3</td>
<td>480</td>
</tr>
<tr>
<td>M24 X 2</td>
<td>525</td>
</tr>
<tr>
<td>M30 X 3.5</td>
<td>960</td>
</tr>
<tr>
<td>M30 X 2</td>
<td>1060</td>
</tr>
<tr>
<td>M36 X 3.5</td>
<td>1730</td>
</tr>
<tr>
<td>M36 X 2</td>
<td>1880</td>
</tr>
</tbody>
</table>

* a. in-tpi = nominal thread diameter in inches threads per inch
 * b. N-m = newton-meters
 * c. mm x pitch = nominal thread diameter in mm x thread pitch
 * d. ft-lb = foot pounds

Torque tolerance + 0%, -15% of torquing values. Unless otherwise specified use torque values listed above.

Tire Inflation Chart

<table>
<thead>
<tr>
<th>Tire Size</th>
<th>Inflation PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50 x 20(^*) 4-Ply Drill Rib</td>
<td>28</td>
</tr>
<tr>
<td>9.0 x 22.5 10-Ply Highway Service 70</td>
<td>70</td>
</tr>
<tr>
<td>9.0 x 24(^*) 8-Ply Rib Implement</td>
<td>40</td>
</tr>
<tr>
<td>9.5L x 15(^*) 6-Ply Rib Implement</td>
<td>32</td>
</tr>
<tr>
<td>9.5L x 15(^*) 8-Ply Rib Implement</td>
<td>44</td>
</tr>
<tr>
<td>9.5L x 15(^*) 12-Ply Rib Implement</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tire Size</th>
<th>Inflation PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>11L x 15(^*) 6-Ply Rib Implement</td>
<td>28</td>
</tr>
<tr>
<td>11L x 15(^*) 8-Ply Rib Implement</td>
<td>36</td>
</tr>
<tr>
<td>12.5L x 15(^*) 8-Ply Rib Implement</td>
<td>36</td>
</tr>
<tr>
<td>12.5L x 15(^*) 10-Ply Rib Implement</td>
<td>44</td>
</tr>
<tr>
<td>12.5L x 15(^*) 20-Ply Rib Implement</td>
<td>40</td>
</tr>
<tr>
<td>41 x 15(^*) 18 - 22-Ply Rib Implement</td>
<td>44</td>
</tr>
</tbody>
</table>

* 3/5/19 196-126M

Great Plains Manufacturing, Inc.
Warranty

Great Plains (a division of Great Plains Manufacturing, Inc.) warrants to the original purchaser that this Great Plains unit will be free from defects in material and workmanship for a period of one year from the first use date when used as intended and under normal service and conditions for personal use; ninety days for custom/commercial or rental use. This Warranty is limited to the replacement of any defective part by Great Plains and the installation by the dealer of any such replacement part. Great Plains reserves the right to inspect any equipment or part which are claimed to have been defective in material or workmanship.

The following items and/or conditions are **not covered under warranty**: failures resulting from abuse or misuse of the equipment, failures occurring as a result of accidental damage or acts of God, failures resulting from alterations or modifications, failures caused by lack of normal maintenance as outlined in the operator’s manual, repairs made by non-authorized personnel, items replaced or repaired due to normal wear (such as wear items and ground engaging components), repeat repair due to improper diagnosis or repair by the dealer, temporary repairs, service calls and/or mileage to and from customer location, overtime premium, or unit hauling expenses. The warranty may be voided if the unit is towed at speeds in excess of 20 miles per hour (32 kilometers per hour), or is used in soils with rocks, stumps, or other obstructions.

Great Plains reserves the right to make changes in materials or design of the product at any time without notice. The warranty shall not be interpreted to render Great Plains liable for damages of any kind, direct or consequential or contingent to property. Furthermore, Great Plains shall not be liable for damages resulting from any cause beyond its control. This warranty does not extend to crop loss, losses caused by planting or harvest delays or any expense or loss of labor, supplies, rental machinery, or for any other reason.

No other warranty of any kind whatsoever express or implied, is made with respect to this sale; and all implied warranties of merchantability and fitness for a particular purpose which exceed the obligations set forth in this written warranty are hereby disclaimed and excluded from this sale.

This warranty is not valid unless the unit is registered with Great Plains within 10 days from the date of the original purchase.
Index

A
accident, hydraulic 2
acremeter, operation 28
amber reflector 7

C
CAUTION, defined 1
chain, safety 3
chemicals 2
children 3
clean-out 2
clothing 2
containers 2

D
DANGER, defined 1
daytime reflector 6
decal replacement 5
decals
caution
general 10
lowering drill 10
no step 10
purpose and torque 11
danger
chemical hazard 8

F
fire ... 1
fumes .. 4

H
headphones 2
hearing 2
High Pressure Fluids 2
leaks ... 2
lights ... 3

M
maintenance safety 4
protective equipment 2
red reflector 6

R
reflector 6

<table>
<thead>
<tr>
<th>Decals</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>amber</td>
<td>7</td>
</tr>
<tr>
<td>daytime</td>
<td>6</td>
</tr>
<tr>
<td>red</td>
<td>6</td>
</tr>
<tr>
<td>SMV</td>
<td>5</td>
</tr>
<tr>
<td>reflectors, safety</td>
<td>5</td>
</tr>
<tr>
<td>riders</td>
<td>3</td>
</tr>
</tbody>
</table>

S
safety chain 3
safety decal 5
safety information
decals ... 5
safety symbol 1

T
tires .. 4
transport speed 3

U
URLs, tires 55

W
WARNING, defined 55
welding 4

Numerics

<table>
<thead>
<tr>
<th>Decals</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>838-467C, decal</td>
<td>8</td>
</tr>
<tr>
<td>858-679C, decal</td>
<td>12</td>
</tr>
<tr>
<td>152-314M, manual</td>
<td>28</td>
</tr>
<tr>
<td>152-325M, manual</td>
<td>28</td>
</tr>
<tr>
<td>194-074M, manual</td>
<td>28</td>
</tr>
<tr>
<td>194-209M, manual</td>
<td>28</td>
</tr>
<tr>
<td>20 mph</td>
<td>3</td>
</tr>
<tr>
<td>30 kph</td>
<td>3</td>
</tr>
<tr>
<td>818-019C, decal</td>
<td>9</td>
</tr>
<tr>
<td>818-020C, decal</td>
<td>10</td>
</tr>
<tr>
<td>818-030C, reflector</td>
<td>6</td>
</tr>
<tr>
<td>818-04C, decal</td>
<td>8</td>
</tr>
<tr>
<td>818-055C, reflector</td>
<td>5</td>
</tr>
<tr>
<td>818-078C, decal</td>
<td>10</td>
</tr>
<tr>
<td>818-188C, decal</td>
<td>9</td>
</tr>
<tr>
<td>818-229C, reflector</td>
<td>7</td>
</tr>
<tr>
<td>818-398C, decal</td>
<td>10</td>
</tr>
<tr>
<td>818-476C, decal</td>
<td>9</td>
</tr>
<tr>
<td>818-477C, decal</td>
<td>8</td>
</tr>
<tr>
<td>818-855C, decal</td>
<td>11</td>
</tr>
<tr>
<td>818-860C, decal</td>
<td>9</td>
</tr>
<tr>
<td>838-092C, decal</td>
<td>11</td>
</tr>
<tr>
<td>838-259C, decal</td>
<td>12</td>
</tr>
<tr>
<td>838-265C, reflector</td>
<td>7</td>
</tr>
<tr>
<td>838-266C, reflector</td>
<td>6</td>
</tr>
<tr>
<td>838-267C, decal</td>
<td>6</td>
</tr>
<tr>
<td>838-426C, decal</td>
<td>11</td>
</tr>
</tbody>
</table>